-import bisect
-import time
-from enigma import *
+from bisect import insort
+from time import strftime, time, localtime, gmtime, mktime
+from calendar import timegm
+from enigma import eTimer
class TimerEntry:
- EventPrepare = 0
- EventStart = 1
- EventEnd = 2
- EventAbort = 3
-
- StateWait = 0
- StatePrepare = 1
- StateRunning = 2
- StateEnded = 3
+ StateWaiting = 0
+ StatePrepared = 1
+ StateRunning = 2
+ StateEnded = 3
def __init__(self, begin, end):
self.begin = begin
- self.prepare_time = 10
+ self.prepare_time = 20
self.end = end
self.state = 0
+ self.resetRepeated()
+ self.backoff = 0
+
+ self.disabled = False
+
+ def resetRepeated(self):
+ self.repeated = int(0)
+
+ def setRepeated(self, day):
+ self.repeated |= (2 ** day)
+ print "Repeated: " + str(self.repeated)
+
+ def isRunning(self):
+ return self.state == self.StateRunning
+
+ # update self.begin and self.end according to the self.repeated-flags
+ def processRepeated(self, findRunningEvent = True):
+ print "ProcessRepeated"
+ if (self.repeated != 0):
+ now = int(time()) + 1
+
+ #to avoid problems with daylight saving, we need to calculate with localtime, in struct_time representation
+ localbegin = localtime(self.begin)
+ localend = localtime(self.end)
+ localnow = localtime(now)
+
+ print strftime("%c", localbegin)
+ print strftime("%c", localend)
+
+ day = []
+ flags = self.repeated
+ for x in range(0, 7):
+ if (flags & 1 == 1):
+ day.append(0)
+ print "Day: " + str(x)
+ else:
+ day.append(1)
+ flags = flags >> 1
+
+ print strftime("%c", localnow)
+
+ while ((day[localbegin.tm_wday] != 0) or ((day[localbegin.tm_wday] == 0) and ((findRunningEvent and localend < localnow) or ((not findRunningEvent) and localbegin < localnow)))):
+ print "localbegin:", strftime("%c", localbegin)
+ print "localend:", strftime("%c", localend)
+ #add one day to the struct_time, we have to convert using gmt functions, because the daylight saving flag might change after we add our 86400 seconds
+ localbegin = gmtime(timegm(localbegin) + 86400)
+ localend = gmtime(timegm(localend) + 86400)
+
+ #we now have a struct_time representation of begin and end in localtime, but we have to calculate back to (gmt) seconds since epoch
+ self.begin = int(mktime(localbegin))
+ self.end = int(mktime(localend)) + 1
+
+ print "ProcessRepeated result"
+ print strftime("%c", localtime(self.begin))
+ print strftime("%c", localtime(self.end))
+
+ self.timeChanged()
+
+ def __lt__(self, o):
+ return self.getNextActivation() < o.getNextActivation()
- def getTime(self):
- if self.state == self.StateWait:
- return self.begin - self.prepare_time
- elif self.state == self.StatePrepare:
- return self.begin
- else:
- return self.end
+ # must be overridden
+ def activate(self):
+ pass
+
+ # can be overridden
+ def timeChanged(self):
+ pass
+
+ # check if a timer entry must be skipped
+ def shouldSkip(self):
+ return self.end <= time() and self.state == TimerEntry.StateWaiting
+
+ def abort(self):
+ self.end = time()
+
+ # in case timer has not yet started, but gets aborted (so it's preparing),
+ # set begin to now.
+ if self.begin > self.end:
+ self.begin = self.end
+
+ self.cancelled = True
- def __lt__(self, o):
- return self.getTime() < o.getTime()
+ # must be overridden!
+ def getNextActivation():
+ pass
+
+ def disable(self):
+ self.disabled = True
- def activate(self, event):
- print "[timer.py] timer %s got activated (%d)!" % (self.description, event)
+ def enable(self):
+ self.disabled = False
class Timer:
-
# the time between "polls". We do this because
# we want to account for time jumps etc.
# of course if they occur <100s before starting,
self.timer = eTimer()
self.timer.timeout.get().append(self.calcNextActivation)
+ self.lastActivation = time()
self.calcNextActivation()
+ self.on_state_change = [ ]
- def addTimerEntry(self, entry):
- # we either go trough Prepare/Start/End-state if the timer is still running,
- # or skip it when it's alrady past the end.
- if entry.end > time.time():
- bisect.insort(self.timer_list, entry)
- self.calcNextActivation()
+ def stateChanged(self, entry):
+ for f in self.on_state_change:
+ f(entry)
+
+ def getNextRecordingTime(self):
+ if len(self.timer_list) > 0:
+ return self.timer_list[0].begin
+ return -1
+
+ def cleanup(self):
+ self.processed_timers = [entry for entry in self.processed_timers if entry.disabled]
+
+ def addTimerEntry(self, entry, noRecalc=0):
+ entry.processRepeated()
+
+ # when the timer has not yet started, and is already passed,
+ # don't go trough waiting/running/end-states, but sort it
+ # right into the processedTimers.
+ if entry.shouldSkip() or entry.state == TimerEntry.StateEnded or (entry.state == TimerEntry.StateWaiting and entry.disabled):
+ print "already passed, skipping"
+ print "shouldSkip:", entry.shouldSkip()
+ print "state == ended", entry.state == TimerEntry.StateEnded
+ print "waiting && disabled:", (entry.state == TimerEntry.StateWaiting and entry.disabled)
+ insort(self.processed_timers, entry)
+ entry.state = TimerEntry.StateEnded
else:
- bisect.insort(self.process_timers, entry)
+ insort(self.timer_list, entry)
+ if not noRecalc:
+ self.calcNextActivation()
def setNextActivation(self, when):
- delay = int((when - time.time()) * 1000)
+ delay = int((when - time()) * 1000)
print "[timer.py] next activation: %d (in %d ms)" % (when, delay)
self.timer.start(delay, 1)
self.next = when
def calcNextActivation(self):
+ if self.lastActivation > time():
+ print "[timer.py] timewarp - re-evaluating all processed timers."
+ tl = self.processed_timers
+ self.processed_timers = [ ]
+ for x in tl:
+ # simulate a "waiting" state to give them a chance to re-occure
+ x.resetState()
+ self.addTimerEntry(x, noRecalc=1)
+
self.processActivation()
+ self.lastActivation = time()
- min = int(time.time()) + self.MaxWaitTime
+ min = int(time()) + self.MaxWaitTime
# calculate next activation point
if len(self.timer_list):
- w = self.timer_list[0].getTime()
+ w = self.timer_list[0].getNextActivation()
if w < min:
min = w
self.setNextActivation(min)
def timeChanged(self, timer):
- self.timer_list.remove(timer)
- bisect.insort(self.timer_list, timer)
+ print "time changed"
+ timer.timeChanged()
+ if timer.state == TimerEntry.StateEnded:
+ self.processed_timers.remove(timer)
+ else:
+ self.timer_list.remove(timer)
+
+ # give the timer a chance to re-enqueue
+ if timer.state == TimerEntry.StateEnded:
+ timer.state = TimerEntry.StateWaiting
+ self.addTimerEntry(timer)
def doActivate(self, w):
- w.activate(w.state)
self.timer_list.remove(w)
- w.state += 1
+
+ # when activating a timer which has already passed,
+ # simply abort the timer. don't run trough all the stages.
+ if w.shouldSkip():
+ w.state = TimerEntry.StateEnded
+ else:
+ # when active returns true, this means "accepted".
+ # otherwise, the current state is kept.
+ # the timer entry itself will fix up the delay then.
+ if w.activate():
+ w.state += 1
+
+ # did this timer reached the last state?
if w.state < TimerEntry.StateEnded:
- bisect.insort(self.timer_list, w)
+ # no, sort it into active list
+ insort(self.timer_list, w)
else:
- bisect.insort(self.processed_timers, w)
-
+ # yes. Process repeated, and re-add.
+ if w.repeated:
+ w.processRepeated()
+ w.state = TimerEntry.StateWaiting
+ self.addTimerEntry(w)
+ else:
+ insort(self.processed_timers, w)
+
+ self.stateChanged(w)
+
def processActivation(self):
- t = int(time.time()) + 1
+ print "It's now ", strftime("%c", localtime(time()))
+ t = int(time()) + 1
# we keep on processing the first entry until it goes into the future.
- while len(self.timer_list) and self.timer_list[0].getTime() < t:
+ while len(self.timer_list) and self.timer_list[0].getNextActivation() < t:
self.doActivate(self.timer_list[0])