#include <dvbsi++/cable_delivery_system_descriptor.h>
#include <dvbsi++/terrestrial_delivery_system_descriptor.h>
+#define eDebugNoSimulate(x...) \
+ do { \
+ if (!m_simulate) \
+ eDebug(x); \
+ } while(0)
+// else \
+// { \
+// eDebugNoNewLine("SIMULATE:"); \
+// eDebug(x); \
+// } \
+
+#define eDebugNoSimulateNoNewLine(x...) \
+ do { \
+ if (!m_simulate) \
+ eDebugNoNewLine(x); \
+ } while(0)
+// else \
+// { \
+// eDebugNoNewLine("SIMULATE:"); \
+// eDebugNoNewLine(x); \
+// } \
+
void eDVBDiseqcCommand::setCommandString(const char *str)
{
if (!str)
if ( fec != FEC::fNone && fec > FEC::f9_10 )
fec = FEC::fAuto;
inversion = Inversion::Unknown;
+ pilot = Pilot::Unknown;
orbital_position = ((descriptor.getOrbitalPosition() >> 12) & 0xF) * 1000;
orbital_position += ((descriptor.getOrbitalPosition() >> 8) & 0xF) * 100;
orbital_position += ((descriptor.getOrbitalPosition() >> 4) & 0xF) * 10;
eDebug("satellite_delivery_descriptor non valid modulation type.. force QPSK");
modulation=QPSK;
}
- roll_off = descriptor.getRollOff();
+ rolloff = descriptor.getRollOff();
if (system == System::DVB_S2)
{
- eDebug("SAT DVB-S2 freq %d, %s, pos %d, sr %d, fec %d, modulation %d, roll_off %d",
+ eDebug("SAT DVB-S2 freq %d, %s, pos %d, sr %d, fec %d, modulation %d, rolloff %d",
frequency,
polarisation ? "hor" : "vert",
orbital_position,
symbol_rate, fec,
modulation,
- roll_off);
+ rolloff);
}
else
{
guard_interval, hierarchy, modulation);
}
-eDVBFrontendParameters::eDVBFrontendParameters(): m_type(-1)
+eDVBFrontendParameters::eDVBFrontendParameters()
+ :m_type(-1), m_flags(0)
{
}
if (parm->getDVBT(oterrestrial))
return -2;
-
if (exact && oterrestrial.bandwidth != terrestrial.bandwidth &&
oterrestrial.bandwidth != eDVBFrontendParametersTerrestrial::Bandwidth::BwAuto &&
terrestrial.bandwidth != eDVBFrontendParametersTerrestrial::Bandwidth::BwAuto)
}
case iDVBFrontend::feCable:
hash = 0xFFFF0000;
+ hash |= (cable.frequency/1000)&0xFFFF;
return 0;
case iDVBFrontend::feTerrestrial:
hash = 0xEEEE0000;
+ hash |= (terrestrial.frequency/1000)&0xFFFF;
+ return 0;
+ default:
+ return -1;
+ }
+}
+
+RESULT eDVBFrontendParameters::calcLockTimeout(unsigned int &timeout) const
+{
+ switch (m_type)
+ {
+ case iDVBFrontend::feSatellite:
+ {
+ /* high symbol rate transponders tune faster, due to
+ requiring less zigzag and giving more symbols faster.
+
+ 5s are definitely not enough on really low SR when
+ zigzag has to find the exact frequency first.
+ */
+ if (sat.symbol_rate > 20000000)
+ timeout = 5000;
+ else if (sat.symbol_rate > 10000000)
+ timeout = 10000;
+ else
+ timeout = 20000;
+ return 0;
+ }
+ case iDVBFrontend::feCable:
+ timeout = 5000;
+ return 0;
+ case iDVBFrontend::feTerrestrial:
+ timeout = 5000;
return 0;
default:
return -1;
DEFINE_REF(eDVBFrontend);
-eDVBFrontend::eDVBFrontend(int adap, int fe, int &ok)
- :m_type(-1), m_dvbid(fe), m_slotid(fe), m_need_rotor_workaround(false)
- ,m_fd(-1), m_sn(0), m_timeout(0), m_tuneTimer(0)
+int eDVBFrontend::PriorityOrder=0;
+
+eDVBFrontend::eDVBFrontend(int adap, int fe, int &ok, bool simulate)
+ :m_simulate(simulate), m_enabled(false), m_type(-1), m_dvbid(fe), m_slotid(fe)
+ ,m_fd(-1), m_need_rotor_workaround(false), m_can_handle_dvbs2(false)
+ , m_timeout(0), m_tuneTimer(0)
#if HAVE_DVB_API_VERSION < 3
,m_secfd(-1)
#endif
#else
sprintf(m_filename, "/dev/dvb/adapter%d/frontend%d", adap, fe);
#endif
- m_timeout = new eTimer(eApp);
+
+ m_timeout = eTimer::create(eApp);
CONNECT(m_timeout->timeout, eDVBFrontend::timeout);
- m_tuneTimer = new eTimer(eApp);
+ m_tuneTimer = eTimer::create(eApp);
CONNECT(m_tuneTimer->timeout, eDVBFrontend::tuneLoop);
for (int i=0; i<eDVBFrontend::NUM_DATA_ENTRIES; ++i)
if (m_sn)
return -1; // already opened
- m_state=0;
+ m_state=stateIdle;
m_tuning=0;
#if HAVE_DVB_API_VERSION < 3
- if (m_secfd < 0)
- {
- m_secfd = ::open(m_sec_filename, O_RDWR);
- if (m_secfd < 0)
- {
- eWarning("failed! (%s) %m", m_sec_filename);
- return -1;
- }
- }
- else
- eWarning("sec %d already opened", m_dvbid);
FrontendInfo fe_info;
#else
dvb_frontend_info fe_info;
#endif
- eDebug("opening frontend %d", m_dvbid);
+ eDebugNoSimulate("opening frontend %d", m_dvbid);
if (m_fd < 0)
{
- m_fd = ::open(m_filename, O_RDWR|O_NONBLOCK);
- if (m_fd < 0)
+ if (!m_simulate || m_type == -1)
{
- eWarning("failed! (%s) %m", m_filename);
-#if HAVE_DVB_API_VERSION < 3
- ::close(m_secfd);
- m_secfd=-1;
-#endif
- return -1;
+ m_fd = ::open(m_filename, O_RDWR|O_NONBLOCK);
+ if (m_fd < 0)
+ {
+ eWarning("failed! (%s) %m", m_filename);
+ return -1;
+ }
}
}
else
eWarning("ioctl FE_GET_INFO failed");
::close(m_fd);
m_fd = -1;
-#if HAVE_DVB_API_VERSION < 3
- ::close(m_secfd);
- m_secfd=-1;
-#endif
return -1;
}
eWarning("unknown frontend type.");
::close(m_fd);
m_fd = -1;
-#if HAVE_DVB_API_VERSION < 3
- ::close(m_secfd);
- m_secfd=-1;
-#endif
return -1;
}
- eDebug("detected %s frontend", "satellite\0cable\0 terrestrial"+fe_info.type*10);
+ eDebugNoSimulate("detected %s frontend", "satellite\0cable\0 terrestrial"+fe_info.type*10);
}
+#if HAVE_DVB_API_VERSION < 3
+ if (m_type == iDVBFrontend::feSatellite)
+ {
+ if (m_secfd < 0)
+ {
+ if (!m_simulate)
+ {
+ m_secfd = ::open(m_sec_filename, O_RDWR);
+ if (m_secfd < 0)
+ {
+ eWarning("failed! (%s) %m", m_sec_filename);
+ ::close(m_fd);
+ m_fd=-1;
+ return -1;
+ }
+ }
+ }
+ else
+ eWarning("sec %d already opened", m_dvbid);
+ }
+#endif
+
setTone(iDVBFrontend::toneOff);
setVoltage(iDVBFrontend::voltageOff);
- m_sn = new eSocketNotifier(eApp, m_fd, eSocketNotifier::Read);
- CONNECT(m_sn->activated, eDVBFrontend::feEvent);
+ if (!m_simulate)
+ {
+ m_sn = eSocketNotifier::create(eApp, m_fd, eSocketNotifier::Read, false);
+ CONNECT(m_sn->activated, eDVBFrontend::feEvent);
+ }
return 0;
}
-int eDVBFrontend::closeFrontend()
+int eDVBFrontend::closeFrontend(bool force)
{
- eDVBRegisteredFrontend *linked_fe = (eDVBRegisteredFrontend*)m_data[LINKED_NEXT_PTR];
- while (linked_fe != (eDVBRegisteredFrontend*)-1)
+ if (!force && m_data[CUR_VOLTAGE] != -1 && m_data[CUR_VOLTAGE] != iDVBFrontend::voltageOff)
{
- if (linked_fe->m_inuse)
+ long tmp = m_data[LINKED_NEXT_PTR];
+ while (tmp != -1)
{
- eDebug("dont close frontend %d until the linked frontend %d in slot %d is still in use",
- m_dvbid, linked_fe->m_frontend->getDVBID(), linked_fe->m_frontend->getSlotID());
- return -1;
+ eDVBRegisteredFrontend *linked_fe = (eDVBRegisteredFrontend*)tmp;
+ if (linked_fe->m_inuse)
+ {
+ eDebugNoSimulate("dont close frontend %d until the linked frontend %d in slot %d is still in use",
+ m_dvbid, linked_fe->m_frontend->getDVBID(), linked_fe->m_frontend->getSlotID());
+ return -1;
+ }
+ linked_fe->m_frontend->getData(LINKED_NEXT_PTR, tmp);
}
- linked_fe->m_frontend->getData(LINKED_NEXT_PTR, (int&)linked_fe);
}
+
if (m_fd >= 0)
{
- eDebug("close frontend %d", m_dvbid);
- m_tuneTimer->stop();
+ eDebugNoSimulate("close frontend %d", m_dvbid);
setTone(iDVBFrontend::toneOff);
setVoltage(iDVBFrontend::voltageOff);
- if (m_sec)
+ m_tuneTimer->stop();
+ if (m_sec && !m_simulate)
m_sec->setRotorMoving(false);
if (!::close(m_fd))
m_fd=-1;
else
eWarning("couldnt close frontend %d", m_dvbid);
- m_data[CSW] = m_data[UCSW] = m_data[TONEBURST] = -1;
+ }
+ else if (m_simulate)
+ {
+ setTone(iDVBFrontend::toneOff);
+ setVoltage(iDVBFrontend::voltageOff);
}
#if HAVE_DVB_API_VERSION < 3
if (m_secfd >= 0)
eWarning("couldnt close sec %d", m_dvbid);
}
#endif
- delete m_sn;
m_sn=0;
+ m_state = stateClosed;
return 0;
}
eDVBFrontend::~eDVBFrontend()
{
+ m_data[LINKED_PREV_PTR] = m_data[LINKED_NEXT_PTR] = -1;
closeFrontend();
- delete m_timeout;
- delete m_tuneTimer;
}
void eDVBFrontend::feEvent(int w)
{
+ eDVBFrontend *sec_fe = this;
+ long tmp = m_data[LINKED_PREV_PTR];
+ while (tmp != -1)
+ {
+ eDVBRegisteredFrontend *linked_fe = (eDVBRegisteredFrontend*)tmp;
+ sec_fe = linked_fe->m_frontend;
+ sec_fe->getData(LINKED_NEXT_PTR, tmp);
+ }
while (1)
{
#if HAVE_DVB_API_VERSION < 3
{
eDebug("stateLostLock");
state = stateLostLock;
- m_data[CSW] = m_data[UCSW] = m_data[TONEBURST] = -1; // reset diseqc
+ sec_fe->m_data[CSW] = sec_fe->m_data[UCSW] = sec_fe->m_data[TONEBURST] = -1; // reset diseqc
}
}
if (m_state != state)
}
}
+#define INRANGE(X,Y,Z) (((X<=Y) && (Y<=Z))||((Z<=Y) && (Y<=X)) ? 1 : 0)
+
int eDVBFrontend::readFrontendData(int type)
{
switch(type)
case bitErrorRate:
{
uint32_t ber=0;
- if (ioctl(m_fd, FE_READ_BER, &ber) < 0 && errno != ERANGE)
- eDebug("FE_READ_BER failed (%m)");
+ if (!m_simulate)
+ {
+ if (ioctl(m_fd, FE_READ_BER, &ber) < 0 && errno != ERANGE)
+ eDebug("FE_READ_BER failed (%m)");
+ }
return ber;
}
- case signalPower:
+ case signalQuality:
{
uint16_t snr=0;
- if (ioctl(m_fd, FE_READ_SNR, &snr) < 0 && errno != ERANGE)
- eDebug("FE_READ_SNR failed (%m)");
+ if (!m_simulate)
+ {
+ if (ioctl(m_fd, FE_READ_SNR, &snr) < 0 && errno != ERANGE)
+ eDebug("FE_READ_SNR failed (%m)");
+ }
return snr;
}
- case signalPowerdB: /* this will move into the driver */
+ case signalQualitydB: /* this will move into the driver */
{
uint16_t snr=0;
+ if (m_simulate)
+ return 0;
if (ioctl(m_fd, FE_READ_SNR, &snr) < 0 && errno != ERANGE)
eDebug("FE_READ_SNR failed (%m)");
- unsigned int SDS_SNRE = snr << 16;
-
- static float SNR_COEFF[6] = {
- 100.0 / 4194304.0,
- -7136.0 / 4194304.0,
- 197418.0 / 4194304.0,
- -2602183.0 / 4194304.0,
- 20377212.0 / 4194304.0,
- -37791203.0 / 4194304.0,
- };
-
- float fval1, fval2, snr_in_db;
- int i;
- fval1 = 12.44714 - (2.0 * log10(SDS_SNRE / 256.0));
- fval2 = pow(10.0, fval1)-1;
- fval1 = 10.0 * log10(fval2);
-
- if (fval1 < 10.0)
+ if (!strcmp(m_description, "BCM4501 (internal)"))
+ {
+ unsigned int SDS_SNRE = snr << 16;
+
+ static float SNR_COEFF[6] = {
+ 100.0 / 4194304.0,
+ -7136.0 / 4194304.0,
+ 197418.0 / 4194304.0,
+ -2602183.0 / 4194304.0,
+ 20377212.0 / 4194304.0,
+ -37791203.0 / 4194304.0,
+ };
+
+ float fval1, fval2, snr_in_db;
+ int i;
+ fval1 = 12.44714 - (2.0 * log10(SDS_SNRE / 256.0));
+ fval2 = pow(10.0, fval1)-1;
+ fval1 = 10.0 * log10(fval2);
+
+ if (fval1 < 10.0)
+ {
+ fval2 = SNR_COEFF[0];
+ for (i=0; i<6; ++i)
+ {
+ fval2 *= fval1;
+ fval2 += SNR_COEFF[i];
+ }
+ fval1 = fval2;
+ }
+ snr_in_db = fval1;
+
+ return (int)(snr_in_db * 100.0);
+ }
+ else if (strstr(m_description, "Alps BSBE1 C01A") ||
+ !strcmp(m_description, "Alps -S(STV0288)"))
{
- fval2 = SNR_COEFF[0];
- for (i=0; i<6; ++i)
+ if (snr == 0)
+ return 0;
+ else if (snr == 0xFFFF) // i think this should not happen
+ return 100*100;
+ else
{
- fval2 *= fval1;
- fval2 += SNR_COEFF[i];
+ enum { REALVAL, REGVAL };
+ const long CN_lookup[31][2] = {
+ {20,8900}, {25,8680}, {30,8420}, {35,8217}, {40,7897},
+ {50,7333}, {60,6747}, {70,6162}, {80,5580}, {90,5029},
+ {100,4529}, {110,4080}, {120,3685}, {130,3316}, {140,2982},
+ {150,2688}, {160,2418}, {170,2188}, {180,1982}, {190,1802},
+ {200,1663}, {210,1520}, {220,1400}, {230,1295}, {240,1201},
+ {250,1123}, {260,1058}, {270,1004}, {280,957}, {290,920},
+ {300,890}
+ };
+ int add=strchr(m_description, '.') ? 0xA250 : 0xA100;
+ long regval = 0xFFFF - ((snr / 3) + add), // revert some dvb api calulations to get the real register value
+ Imin=0,
+ Imax=30,
+ i;
+ if(INRANGE(CN_lookup[Imin][REGVAL],regval,CN_lookup[Imax][REGVAL]))
+ {
+ long val;
+ while((Imax-Imin)>1)
+ {
+ i=(Imax+Imin)/2;
+ if(INRANGE(CN_lookup[Imin][REGVAL],regval,CN_lookup[i][REGVAL]))
+ Imax = i;
+ else
+ Imin = i;
+ }
+ return (((regval - CN_lookup[Imin][REGVAL])
+ * (CN_lookup[Imax][REALVAL] - CN_lookup[Imin][REALVAL])
+ / (CN_lookup[Imax][REGVAL] - CN_lookup[Imin][REGVAL]))
+ + CN_lookup[Imin][REALVAL]) * 10;
+ }
+ return 100;
}
- fval1 = fval2;
+ return 0;
}
- snr_in_db = fval1;
-
- return (int)(snr_in_db * 100.0);
+ else if (!strcmp(m_description, "Alps BSBE1 702A") || // some frontends with STV0299
+ !strcmp(m_description, "Alps -S") ||
+ !strcmp(m_description, "Philips -S") ||
+ !strcmp(m_description, "LG -S") )
+ {
+ float snr_in_db=(snr-39075)/1764.7;
+ return (int)(snr_in_db * 100.0);
+ } else if (!strcmp(m_description, "Alps BSBE2"))
+ {
+ return (int)((snr >> 7) * 10.0);
+ } /* else
+ eDebug("no SNR dB calculation for frontendtype %s yet", m_description); */
+ return 0x12345678;
}
- case signalQuality:
+ case signalPower:
{
uint16_t strength=0;
- if (ioctl(m_fd, FE_READ_SIGNAL_STRENGTH, &strength) < 0 && errno != ERANGE)
- eDebug("FE_READ_SIGNAL_STRENGTH failed (%m)");
+ if (!m_simulate)
+ {
+ if (ioctl(m_fd, FE_READ_SIGNAL_STRENGTH, &strength) < 0 && errno != ERANGE)
+ eDebug("FE_READ_SIGNAL_STRENGTH failed (%m)");
+ }
return strength;
}
case locked:
#else
fe_status_t status;
#endif
- if ( ioctl(m_fd, FE_READ_STATUS, &status) < 0 && errno != ERANGE )
- eDebug("FE_READ_STATUS failed (%m)");
- return !!(status&FE_HAS_LOCK);
+ if (!m_simulate)
+ {
+ if ( ioctl(m_fd, FE_READ_STATUS, &status) < 0 && errno != ERANGE )
+ eDebug("FE_READ_STATUS failed (%m)");
+ return !!(status&FE_HAS_LOCK);
+ }
+ return 1;
}
case synced:
{
#else
fe_status_t status;
#endif
- if ( ioctl(m_fd, FE_READ_STATUS, &status) < 0 && errno != ERANGE )
- eDebug("FE_READ_STATUS failed (%m)");
- return !!(status&FE_HAS_SYNC);
+ if (!m_simulate)
+ {
+ if ( ioctl(m_fd, FE_READ_STATUS, &status) < 0 && errno != ERANGE )
+ eDebug("FE_READ_STATUS failed (%m)");
+ return !!(status&FE_HAS_SYNC);
+ }
+ return 1;
}
case frontendNumber:
return m_slotid;
eDebug("could not create PyObject for %s", key);
}
+void PutToDict(ePyObject &dict, const char*key, ePyObject item)
+{
+ if (item)
+ {
+ if (PyDict_SetItemString(dict, key, item))
+ eDebug("put %s to dict failed", key);
+ Py_DECREF(item);
+ }
+ else
+ eDebug("invalid PyObject for %s", key);
+}
+
void PutToDict(ePyObject &dict, const char*key, const char *value)
{
ePyObject item = PyString_FromString(value);
void fillDictWithSatelliteData(ePyObject dict, const FRONTENDPARAMETERS &parm, eDVBFrontend *fe)
{
- int freq_offset=0;
- int csw=0;
+ long freq_offset=0;
const char *tmp=0;
- fe->getData(eDVBFrontend::CSW, csw);
fe->getData(eDVBFrontend::FREQ_OFFSET, freq_offset);
int frequency = parm_frequency + freq_offset;
PutToDict(dict, "frequency", frequency);
break;
#endif
}
+ PutToDict(dict, "fec_inner", tmp);
#if HAVE_DVB_API_VERSION >=3
PutToDict(dict, "modulation",
parm_u_qpsk_fec_inner > FEC_S2_QPSK_9_10 ? "8PSK": "QPSK" );
+ if (parm_u_qpsk_fec_inner > FEC_AUTO)
+ {
+ switch(parm_inversion & 0xc)
+ {
+ default: // unknown rolloff
+ case 0: // 0.35
+ tmp = "ROLLOFF_0_35";
+ break;
+ case 4: // 0.25
+ tmp = "ROLLOFF_0_25";
+ break;
+ case 8: // 0.20
+ tmp = "ROLLOFF_0_20";
+ break;
+ }
+ PutToDict(dict, "rolloff", tmp);
+ if (parm_u_qpsk_fec_inner > FEC_S2_QPSK_9_10)
+ {
+ switch(parm_inversion & 0x30)
+ {
+ case 0: // pilot off
+ tmp = "PILOT_OFF";
+ break;
+ case 0x10: // pilot on
+ tmp = "PILOT_ON";
+ break;
+ case 0x20: // pilot auto
+ tmp = "PILOT_AUTO";
+ break;
+ }
+ PutToDict(dict, "pilot", tmp);
+ }
+ tmp = "DVB-S2";
+ }
+ else
+ tmp = "DVB-S";
#else
PutToDict(dict, "modulation", "QPSK" );
+ tmp = "DVB-S";
#endif
- PutToDict(dict, "fec_inner", tmp);
- tmp = parm_u_qpsk_fec_inner > FEC_AUTO ?
- "DVB-S2" : "DVB-S";
PutToDict(dict, "system", tmp);
}
void fillDictWithCableData(ePyObject dict, const FRONTENDPARAMETERS &parm)
{
const char *tmp=0;
+#if HAVE_DVB_API_VERSION < 3
+ PutToDict(dict, "frequency", parm_frequency);
+#else
PutToDict(dict, "frequency", parm_frequency/1000);
+#endif
PutToDict(dict, "symbol_rate", parm_u_qam_symbol_rate);
switch(parm_u_qam_fec_inner)
{
PutToDict(dest, "tuner_locked", readFrontendData(locked));
PutToDict(dest, "tuner_synced", readFrontendData(synced));
PutToDict(dest, "tuner_bit_error_rate", readFrontendData(bitErrorRate));
- PutToDict(dest, "tuner_signal_power", readFrontendData(signalPower));
- PutToDict(dest, "tuner_signal_power_db", readFrontendData(signalPowerdB));
PutToDict(dest, "tuner_signal_quality", readFrontendData(signalQuality));
+ int sigQualitydB = readFrontendData(signalQualitydB);
+ if (sigQualitydB == 0x12345678) // not support yet
+ {
+ ePyObject obj=Py_None;
+ Py_INCREF(obj);
+ PutToDict(dest, "tuner_signal_quality_db", obj);
+ }
+ else
+ PutToDict(dest, "tuner_signal_quality_db", sigQualitydB);
+ PutToDict(dest, "tuner_signal_power", readFrontendData(signalPower));
}
}
void eDVBFrontend::getTransponderData(ePyObject dest, bool original)
{
- if (m_fd != -1 && dest && PyDict_Check(dest))
+ if (dest && PyDict_Check(dest))
{
switch(m_type)
{
case feTerrestrial:
{
FRONTENDPARAMETERS front;
- if (!original && ioctl(m_fd, FE_GET_FRONTEND, &front)<0)
- eDebug("FE_GET_FRONTEND (%m)");
- else
+ if (m_fd == -1 && !original)
+ original = true;
+ else if (ioctl(m_fd, FE_GET_FRONTEND, &front)<0)
+ {
+ eDebug("FE_GET_FRONTEND failed (%m)");
+ original = true;
+ }
{
- const FRONTENDPARAMETERS &parm = original ? this->parm : front;
+ const FRONTENDPARAMETERS &parm = original || m_simulate ? this->parm : front;
const char *tmp = "INVERSION_AUTO";
switch(parm_inversion)
{
if (dest && PyDict_Check(dest))
{
const char *tmp=0;
- PutToDict(dest, "tuner_number", m_dvbid);
+ PutToDict(dest, "tuner_number", m_slotid);
switch(m_type)
{
case feSatellite:
#endif
int eDVBFrontend::readInputpower()
{
+ if (m_simulate)
+ return 0;
int power=m_slotid; // this is needed for read inputpower from the correct tuner !
-
- // open front prozessor
- int fp=::open("/dev/dbox/fp0", O_RDWR);
- if (fp < 0)
+ char proc_name[64];
+ sprintf(proc_name, "/proc/stb/fp/lnb_sense%d", m_slotid);
+ FILE *f=fopen(proc_name, "r");
+ if (f)
{
- eDebug("couldn't open fp");
- return -1;
+ if (fscanf(f, "%d", &power) != 1)
+ eDebug("read %s failed!! (%m)", proc_name);
+ else
+ eDebug("%s is %d\n", proc_name, power);
+ fclose(f);
}
- static bool old_fp = (::ioctl(fp, FP_IOCTL_GET_ID) < 0);
- if ( ioctl( fp, old_fp ? 9 : 0x100, &power ) < 0 )
+ else
{
- eDebug("FP_IOCTL_GET_LNB_CURRENT failed (%m)");
- return -1;
+ // open front prozessor
+ int fp=::open("/dev/dbox/fp0", O_RDWR);
+ if (fp < 0)
+ {
+ eDebug("couldn't open fp");
+ return -1;
+ }
+ static bool old_fp = (::ioctl(fp, FP_IOCTL_GET_ID) < 0);
+ if ( ioctl( fp, old_fp ? 9 : 0x100, &power ) < 0 )
+ {
+ eDebug("FP_IOCTL_GET_LNB_CURRENT failed (%m)");
+ return -1;
+ }
+ ::close(fp);
}
- ::close(fp);
return power;
}
bool eDVBFrontend::setSecSequencePos(int steps)
{
- eDebug("set sequence pos %d", steps);
+ eDebugNoSimulate("set sequence pos %d", steps);
if (!steps)
return false;
while( steps > 0 )
void eDVBFrontend::tuneLoop() // called by m_tuneTimer
{
int delay=0;
+ eDVBFrontend *sec_fe = this;
+ eDVBRegisteredFrontend *regFE = 0;
+ long tmp = m_data[LINKED_PREV_PTR];
+ while ( tmp != -1 )
+ {
+ eDVBRegisteredFrontend *prev = (eDVBRegisteredFrontend *)tmp;
+ sec_fe = prev->m_frontend;
+ tmp = prev->m_frontend->m_data[LINKED_PREV_PTR];
+ if (tmp == -1 && sec_fe != this && !prev->m_inuse) {
+ int state = sec_fe->m_state;
+ // workaround to put the kernel frontend thread into idle state!
+ if (state != eDVBFrontend::stateIdle && state != stateClosed)
+ {
+ sec_fe->closeFrontend(true);
+ state = sec_fe->m_state;
+ }
+ // sec_fe is closed... we must reopen it here..
+ if (state == eDVBFrontend::stateClosed)
+ {
+ regFE = prev;
+ prev->inc_use();
+ }
+ }
+ }
+
if ( m_sec_sequence && m_sec_sequence.current() != m_sec_sequence.end() )
{
-// eDebug("tuneLoop %d\n", m_sec_sequence.current()->cmd);
+ long *sec_fe_data = sec_fe->m_data;
+// eDebugNoSimulate("tuneLoop %d\n", m_sec_sequence.current()->cmd);
switch (m_sec_sequence.current()->cmd)
{
case eSecCommand::SLEEP:
delay = m_sec_sequence.current()++->msec;
- eDebug("[SEC] sleep %dms", delay);
+ eDebugNoSimulate("[SEC] sleep %dms", delay);
break;
case eSecCommand::GOTO:
if ( !setSecSequencePos(m_sec_sequence.current()->steps) )
case eSecCommand::SET_VOLTAGE:
{
int voltage = m_sec_sequence.current()++->voltage;
- eDebug("[SEC] setVoltage %d", voltage);
- setVoltage(voltage);
+ eDebugNoSimulate("[SEC] setVoltage %d", voltage);
+ sec_fe->setVoltage(voltage);
break;
}
case eSecCommand::IF_VOLTAGE_GOTO:
{
eSecCommand::pair &compare = m_sec_sequence.current()->compare;
- if ( compare.voltage == m_data[CUR_VOLTAGE] && setSecSequencePos(compare.steps) )
+ if ( compare.voltage == sec_fe_data[CUR_VOLTAGE] && setSecSequencePos(compare.steps) )
break;
++m_sec_sequence.current();
break;
case eSecCommand::IF_NOT_VOLTAGE_GOTO:
{
eSecCommand::pair &compare = m_sec_sequence.current()->compare;
- if ( compare.voltage != m_data[CUR_VOLTAGE] && setSecSequencePos(compare.steps) )
+ if ( compare.voltage != sec_fe_data[CUR_VOLTAGE] && setSecSequencePos(compare.steps) )
break;
++m_sec_sequence.current();
break;
case eSecCommand::IF_TONE_GOTO:
{
eSecCommand::pair &compare = m_sec_sequence.current()->compare;
- if ( compare.tone == m_data[CUR_TONE] && setSecSequencePos(compare.steps) )
+ if ( compare.tone == sec_fe_data[CUR_TONE] && setSecSequencePos(compare.steps) )
break;
++m_sec_sequence.current();
break;
case eSecCommand::IF_NOT_TONE_GOTO:
{
eSecCommand::pair &compare = m_sec_sequence.current()->compare;
- if ( compare.tone != m_data[CUR_TONE] && setSecSequencePos(compare.steps) )
+ if ( compare.tone != sec_fe_data[CUR_TONE] && setSecSequencePos(compare.steps) )
break;
++m_sec_sequence.current();
break;
}
case eSecCommand::SET_TONE:
- eDebug("[SEC] setTone %d", m_sec_sequence.current()->tone);
- setTone(m_sec_sequence.current()++->tone);
+ eDebugNoSimulate("[SEC] setTone %d", m_sec_sequence.current()->tone);
+ sec_fe->setTone(m_sec_sequence.current()++->tone);
break;
case eSecCommand::SEND_DISEQC:
- sendDiseqc(m_sec_sequence.current()->diseqc);
- eDebugNoNewLine("[SEC] sendDiseqc: ");
+ sec_fe->sendDiseqc(m_sec_sequence.current()->diseqc);
+ eDebugNoSimulateNoNewLine("[SEC] sendDiseqc: ");
for (int i=0; i < m_sec_sequence.current()->diseqc.len; ++i)
- eDebugNoNewLine("%02x", m_sec_sequence.current()->diseqc.data[i]);
- eDebug("");
+ eDebugNoSimulateNoNewLine("%02x", m_sec_sequence.current()->diseqc.data[i]);
+ eDebugNoSimulate("");
++m_sec_sequence.current();
break;
case eSecCommand::SEND_TONEBURST:
- eDebug("[SEC] sendToneburst: %d", m_sec_sequence.current()->toneburst);
- sendToneburst(m_sec_sequence.current()++->toneburst);
+ eDebugNoSimulate("[SEC] sendToneburst: %d", m_sec_sequence.current()->toneburst);
+ sec_fe->sendToneburst(m_sec_sequence.current()++->toneburst);
break;
case eSecCommand::SET_FRONTEND:
- eDebug("[SEC] setFrontend");
+ eDebugNoSimulate("[SEC] setFrontend");
setFrontend();
++m_sec_sequence.current();
break;
case eSecCommand::START_TUNE_TIMEOUT:
- m_timeout->start(5000, 1); // 5 sec timeout. TODO: symbolrate dependent
+ {
+ if (!m_simulate)
+ m_timeout->start(m_sec_sequence.current()->timeout, 1);
++m_sec_sequence.current();
break;
+ }
case eSecCommand::SET_TIMEOUT:
m_timeoutCount = m_sec_sequence.current()++->val;
- eDebug("[SEC] set timeout %d", m_timeoutCount);
+ eDebugNoSimulate("[SEC] set timeout %d", m_timeoutCount);
break;
case eSecCommand::IF_TIMEOUT_GOTO:
if (!m_timeoutCount)
{
- eDebug("[SEC] rotor timout");
- m_sec->setRotorMoving(false);
+ eDebugNoSimulate("[SEC] rotor timout");
setSecSequencePos(m_sec_sequence.current()->steps);
}
else
int idx = m_sec_sequence.current()++->val;
if ( idx == 0 || idx == 1 )
{
- m_idleInputpower[idx] = readInputpower();
- eDebug("[SEC] idleInputpower[%d] is %d", idx, m_idleInputpower[idx]);
+ m_idleInputpower[idx] = sec_fe->readInputpower();
+ eDebugNoSimulate("[SEC] idleInputpower[%d] is %d", idx, m_idleInputpower[idx]);
}
else
- eDebug("[SEC] idleInputpower measure index(%d) out of bound !!!", idx);
+ eDebugNoSimulate("[SEC] idleInputpower measure index(%d) out of bound !!!", idx);
break;
}
case eSecCommand::IF_MEASURE_IDLE_WAS_NOT_OK_GOTO:
{
eSecCommand::pair &compare = m_sec_sequence.current()->compare;
int idx = compare.val;
- if ( idx == 0 || idx == 1 )
+ if ( !m_simulate && (idx == 0 || idx == 1) )
{
- int idle = readInputpower();
+ int idle = sec_fe->readInputpower();
int diff = abs(idle-m_idleInputpower[idx]);
if ( diff > 0)
{
- eDebug("measure idle(%d) was not okay.. (%d - %d = %d) retry", idx, m_idleInputpower[idx], idle, diff);
+ eDebugNoSimulate("measure idle(%d) was not okay.. (%d - %d = %d) retry", idx, m_idleInputpower[idx], idle, diff);
setSecSequencePos(compare.steps);
break;
}
case eSecCommand::IF_TUNER_LOCKED_GOTO:
{
eSecCommand::rotor &cmd = m_sec_sequence.current()->measure;
- if (readFrontendData(locked))
+ if (m_simulate)
{
- eDebug("[SEC] locked step %d ok", cmd.okcount);
+ setSecSequencePos(cmd.steps);
+ break;
+ }
+ int signal = 0;
+ int isLocked = readFrontendData(locked);
+ m_idleInputpower[0] = m_idleInputpower[1] = 0;
+ if (isLocked && ((abs((signal = readFrontendData(signalQualitydB)) - cmd.lastSignal) < 50) || !cmd.lastSignal))
+ {
+ if (cmd.lastSignal)
+ eDebugNoSimulate("[SEC] locked step %d ok (%d %d)", cmd.okcount, signal, cmd.lastSignal);
+ else
+ {
+ eDebugNoSimulate("[SEC] locked step %d ok", cmd.okcount);
+ cmd.lastSignal = signal;
+ }
++cmd.okcount;
- if (cmd.okcount > 12)
+ if (cmd.okcount > 4)
{
- eDebug("ok > 12 .. goto %d\n",m_sec_sequence.current()->steps);
+ eDebugNoSimulate("ok > 4 .. goto %d\n",cmd.steps);
setSecSequencePos(cmd.steps);
+ m_state = stateLock;
+ m_stateChanged(this);
+ feEvent(-1);
+ m_sn->start();
break;
}
}
else
{
- eDebug("[SEC] rotor locked step %d failed", cmd.okcount);
+ if (isLocked)
+ eDebugNoSimulate("[SEC] rotor locked step %d failed (oldSignal %d, curSignal %d)", cmd.okcount, signal, cmd.lastSignal);
+ else
+ eDebugNoSimulate("[SEC] rotor locked step %d failed (not locked)", cmd.okcount);
--m_timeoutCount;
if (!m_timeoutCount && m_retryCount > 0)
--m_retryCount;
cmd.okcount=0;
+ cmd.lastSignal=0;
}
++m_sec_sequence.current();
break;
}
case eSecCommand::MEASURE_RUNNING_INPUTPOWER:
- m_runningInputpower = readInputpower();
- eDebug("[SEC] runningInputpower is %d", m_runningInputpower);
+ m_runningInputpower = sec_fe->readInputpower();
+ eDebugNoSimulate("[SEC] runningInputpower is %d", m_runningInputpower);
+ ++m_sec_sequence.current();
+ break;
+ case eSecCommand::SET_ROTOR_MOVING:
+ if (!m_simulate)
+ m_sec->setRotorMoving(true);
+ ++m_sec_sequence.current();
+ break;
+ case eSecCommand::SET_ROTOR_STOPPED:
+ if (!m_simulate)
+ m_sec->setRotorMoving(false);
++m_sec_sequence.current();
break;
case eSecCommand::IF_INPUTPOWER_DELTA_GOTO:
{
- int idleInputpower = m_idleInputpower[ (m_data[CUR_VOLTAGE]&1) ? 0 : 1];
eSecCommand::rotor &cmd = m_sec_sequence.current()->measure;
+ if (m_simulate)
+ {
+ setSecSequencePos(cmd.steps);
+ break;
+ }
+ int idleInputpower = m_idleInputpower[ (sec_fe_data[CUR_VOLTAGE]&1) ? 0 : 1];
const char *txt = cmd.direction ? "running" : "stopped";
- eDebug("[SEC] waiting for rotor %s %d, idle %d, delta %d",
+ eDebugNoSimulate("[SEC] waiting for rotor %s %d, idle %d, delta %d",
txt,
m_runningInputpower,
idleInputpower,
|| (!cmd.direction && abs(m_runningInputpower - idleInputpower) <= cmd.deltaA) )
{
++cmd.okcount;
- eDebug("[SEC] rotor %s step %d ok", txt, cmd.okcount);
+ eDebugNoSimulate("[SEC] rotor %s step %d ok", txt, cmd.okcount);
if ( cmd.okcount > 6 )
{
- m_sec->setRotorMoving(cmd.direction);
- eDebug("[SEC] rotor is %s", txt);
+ eDebugNoSimulate("[SEC] rotor is %s", txt);
if (setSecSequencePos(cmd.steps))
break;
}
}
else
{
- eDebug("[SEC] rotor not %s... reset counter.. increase timeout", txt);
+ eDebugNoSimulate("[SEC] rotor not %s... reset counter.. increase timeout", txt);
--m_timeoutCount;
if (!m_timeoutCount && m_retryCount > 0)
--m_retryCount;
break;
}
case eSecCommand::IF_ROTORPOS_VALID_GOTO:
- if (m_data[ROTOR_CMD] != -1 && m_data[ROTOR_POS] != -1)
+ if (sec_fe_data[ROTOR_CMD] != -1 && sec_fe_data[ROTOR_POS] != -1)
setSecSequencePos(m_sec_sequence.current()->steps);
else
++m_sec_sequence.current();
break;
+ case eSecCommand::INVALIDATE_CURRENT_SWITCHPARMS:
+ eDebugNoSimulate("[SEC] invalidate current switch params");
+ sec_fe_data[CSW] = -1;
+ sec_fe_data[UCSW] = -1;
+ sec_fe_data[TONEBURST] = -1;
+ ++m_sec_sequence.current();
+ break;
+ case eSecCommand::UPDATE_CURRENT_SWITCHPARMS:
+ sec_fe_data[CSW] = sec_fe_data[NEW_CSW];
+ sec_fe_data[UCSW] = sec_fe_data[NEW_UCSW];
+ sec_fe_data[TONEBURST] = sec_fe_data[NEW_TONEBURST];
+ eDebugNoSimulate("[SEC] update current switch params");
+ ++m_sec_sequence.current();
+ break;
case eSecCommand::INVALIDATE_CURRENT_ROTORPARMS:
- m_data[ROTOR_CMD] = m_data[ROTOR_POS] = -1;
- eDebug("[SEC] invalidate current rotorparams");
+ eDebugNoSimulate("[SEC] invalidate current rotorparams");
+ sec_fe_data[ROTOR_CMD] = -1;
+ sec_fe_data[ROTOR_POS] = -1;
++m_sec_sequence.current();
break;
case eSecCommand::UPDATE_CURRENT_ROTORPARAMS:
- m_data[ROTOR_CMD] = m_data[NEW_ROTOR_CMD];
- m_data[ROTOR_POS] = m_data[NEW_ROTOR_POS];
- eDebug("[SEC] update current rotorparams %d %04x %d", m_timeoutCount, m_data[5], m_data[6]);
+ sec_fe_data[ROTOR_CMD] = sec_fe_data[NEW_ROTOR_CMD];
+ sec_fe_data[ROTOR_POS] = sec_fe_data[NEW_ROTOR_POS];
+ eDebugNoSimulate("[SEC] update current rotorparams %d %04lx %ld", m_timeoutCount, sec_fe_data[ROTOR_CMD], sec_fe_data[ROTOR_POS]);
++m_sec_sequence.current();
break;
case eSecCommand::SET_ROTOR_DISEQC_RETRYS:
m_retryCount = m_sec_sequence.current()++->val;
- eDebug("[SEC] set rotor retries %d", m_retryCount);
+ eDebugNoSimulate("[SEC] set rotor retries %d", m_retryCount);
break;
case eSecCommand::IF_NO_MORE_ROTOR_DISEQC_RETRYS_GOTO:
if (!m_retryCount)
{
- eDebug("[SEC] no more rotor retrys");
+ eDebugNoSimulate("[SEC] no more rotor retrys");
setSecSequencePos(m_sec_sequence.current()->steps);
}
else
break;
case eSecCommand::SET_POWER_LIMITING_MODE:
{
- if (!m_need_rotor_workaround)
- break;
-
- char dev[16];
-
- // FIXMEEEEEE hardcoded i2c devices for dm7025 and dm8000
- if (m_slotid < 2)
- sprintf(dev, "/dev/i2c/%d", m_slotid);
- else if (m_slotid == 2)
- sprintf(dev, "/dev/i2c/2"); // first nim socket on DM8000 use /dev/i2c/2
- else if (m_slotid == 3)
- sprintf(dev, "/dev/i2c/4"); // second nim socket on DM8000 use /dev/i2c/4
- int fd = ::open(dev, O_RDWR);
-
- unsigned char data[2];
- ::ioctl(fd, I2C_SLAVE_FORCE, 0x10 >> 1);
- if(::read(fd, data, 1) != 1)
- eDebug("[SEC] error read lnbp (%m)");
- if ( m_sec_sequence.current()->mode == eSecCommand::modeStatic )
+ if (!m_simulate)
{
- data[0] |= 0x80; // enable static current limiting
- eDebug("[SEC] set static current limiting");
- }
- else
- {
- data[0] &= ~0x80; // enable dynamic current limiting
- eDebug("[SEC] set dynamic current limiting");
+ char proc_name[64];
+ sprintf(proc_name, "/proc/stb/frontend/%d/static_current_limiting", sec_fe->m_dvbid);
+ FILE *f=fopen(proc_name, "w");
+ if (f) // new interface exist?
+ {
+ bool slimiting = m_sec_sequence.current()->mode == eSecCommand::modeStatic;
+ if (fprintf(f, "%s", slimiting ? "on" : "off") <= 0)
+ eDebugNoSimulate("write %s failed!! (%m)", proc_name);
+ else
+ eDebugNoSimulate("[SEC] set %s current limiting", slimiting ? "static" : "dynamic");
+ fclose(f);
+ }
+ else if (sec_fe->m_need_rotor_workaround)
+ {
+ char dev[16];
+ int slotid = sec_fe->m_slotid;
+ // FIXMEEEEEE hardcoded i2c devices for dm7025 and dm8000
+ if (slotid < 2)
+ sprintf(dev, "/dev/i2c/%d", slotid);
+ else if (slotid == 2)
+ sprintf(dev, "/dev/i2c/2"); // first nim socket on DM8000 use /dev/i2c/2
+ else if (slotid == 3)
+ sprintf(dev, "/dev/i2c/4"); // second nim socket on DM8000 use /dev/i2c/4
+ int fd = ::open(dev, O_RDWR);
+
+ unsigned char data[2];
+ ::ioctl(fd, I2C_SLAVE_FORCE, 0x10 >> 1);
+ if(::read(fd, data, 1) != 1)
+ eDebugNoSimulate("[SEC] error read lnbp (%m)");
+ if ( m_sec_sequence.current()->mode == eSecCommand::modeStatic )
+ {
+ data[0] |= 0x80; // enable static current limiting
+ eDebugNoSimulate("[SEC] set static current limiting");
+ }
+ else
+ {
+ data[0] &= ~0x80; // enable dynamic current limiting
+ eDebugNoSimulate("[SEC] set dynamic current limiting");
+ }
+ if(::write(fd, data, 1) != 1)
+ eDebugNoSimulate("[SEC] error write lnbp (%m)");
+ ::close(fd);
+ }
}
- if(::write(fd, data, 1) != 1)
- eDebug("[SEC] error write lnbp (%m)");
- ::close(fd);
++m_sec_sequence.current();
break;
}
default:
- eDebug("[SEC] unhandled sec command %d",
+ eDebugNoSimulate("[SEC] unhandled sec command %d",
++m_sec_sequence.current()->cmd);
++m_sec_sequence.current();
}
- m_tuneTimer->start(delay,true);
+ if (!m_simulate)
+ m_tuneTimer->start(delay,true);
}
+ if (regFE)
+ regFE->dec_use();
+ if (m_simulate && m_sec_sequence.current() != m_sec_sequence.end())
+ tuneLoop();
}
void eDVBFrontend::setFrontend()
{
- eDebug("setting frontend %d", m_dvbid);
- m_sn->start();
- feEvent(-1);
- if (ioctl(m_fd, FE_SET_FRONTEND, &parm) == -1)
+ if (!m_simulate)
{
- perror("FE_SET_FRONTEND failed");
- return;
+ eDebug("setting frontend %d", m_dvbid);
+ m_sn->start();
+ feEvent(-1);
+ if (ioctl(m_fd, FE_SET_FRONTEND, &parm) == -1)
+ {
+ perror("FE_SET_FRONTEND failed");
+ return;
+ }
}
}
return 0;
}
-RESULT eDVBFrontend::prepare_sat(const eDVBFrontendParametersSatellite &feparm)
+RESULT eDVBFrontend::prepare_sat(const eDVBFrontendParametersSatellite &feparm, unsigned int tunetimeout)
{
int res;
if (!m_sec)
eWarning("no SEC module active!");
return -ENOENT;
}
- res = m_sec->prepare(*this, parm, feparm, 1 << m_slotid);
+ res = m_sec->prepare(*this, parm, feparm, 1 << m_slotid, tunetimeout);
if (!res)
{
- eDebug("prepare_sat System %d Freq %d Pol %d SR %d INV %d FEC %d orbpos %d",
+ eDebugNoSimulate("prepare_sat System %d Freq %d Pol %d SR %d INV %d FEC %d orbpos %d",
feparm.system,
feparm.frequency,
feparm.polarisation,
parm_u_qpsk_fec_inner = FEC_7_8;
break;
default:
- eDebug("no valid fec for DVB-S set.. assume auto");
+ eDebugNoSimulate("no valid fec for DVB-S set.. assume auto");
case eDVBFrontendParametersSatellite::FEC::fAuto:
parm_u_qpsk_fec_inner = FEC_AUTO;
break;
parm_u_qpsk_fec_inner = FEC_S2_QPSK_9_10;
break;
default:
- eDebug("no valid fec for DVB-S2 set.. abort !!");
+ eDebugNoSimulate("no valid fec for DVB-S2 set.. abort !!");
return -EINVAL;
}
- if (feparm.modulation == eDVBFrontendParametersSatellite::Modulation::M8PSK)
+ parm_inversion |= (feparm.rolloff << 2); // Hack.. we use bit 2..3 of inversion param for rolloff
+ if (feparm.modulation == eDVBFrontendParametersSatellite::Modulation::M8PSK) {
parm_u_qpsk_fec_inner = (fe_code_rate_t)((int)parm_u_qpsk_fec_inner+9);
// 8PSK fec driver values are decimal 9 bigger
+ parm_inversion |= (feparm.pilot << 4); // Hack.. we use bit 4..5 of inversion param for pilot
+ }
}
#endif
// FIXME !!! get frequency range from tuner
if ( parm_frequency < 900000 || parm_frequency > 2200000 )
{
- eDebug("%d mhz out of tuner range.. dont tune", parm_frequency/1000);
+ eDebugNoSimulate("%d mhz out of tuner range.. dont tune", parm_frequency/1000);
return -EINVAL;
}
- eDebug("tuning to %d mhz", parm_frequency/1000);
+ eDebugNoSimulate("tuning to %d mhz", parm_frequency/1000);
}
return res;
}
RESULT eDVBFrontend::prepare_cable(const eDVBFrontendParametersCable &feparm)
{
+#if HAVE_DVB_API_VERSION < 3
+ parm_frequency = feparm.frequency;
+#else
parm_frequency = feparm.frequency * 1000;
+#endif
parm_u_qam_symbol_rate = feparm.symbol_rate;
switch (feparm.modulation)
{
parm_u_qam_fec_inner = FEC_AUTO;
break;
}
- eDebug("tuning to %d khz, sr %d, fec %d, modulation %d, inversion %d",
+ eDebugNoSimulate("tuning to %d khz, sr %d, fec %d, modulation %d, inversion %d",
parm_frequency/1000,
parm_u_qam_symbol_rate,
parm_u_qam_fec_inner,
RESULT eDVBFrontend::tune(const iDVBFrontendParameters &where)
{
- eDebug("(%d)tune", m_dvbid);
+ unsigned int timeout = 5000;
+ eDebugNoSimulate("(%d)tune", m_dvbid);
m_timeout->stop();
int res=0;
- if (!m_sn)
+ if (!m_sn && !m_simulate)
{
eDebug("no frontend device opened... do not try to tune !!!");
res = -ENODEV;
goto tune_error;
}
- m_sn->stop();
+ if (!m_simulate)
+ m_sn->stop();
+
m_sec_sequence.clear();
+ where.calcLockTimeout(timeout);
+
switch (m_type)
{
case feSatellite:
res = -EINVAL;
goto tune_error;
}
- m_sec->setRotorMoving(false);
- res=prepare_sat(feparm);
+ if (!m_simulate)
+ m_sec->setRotorMoving(false);
+ res=prepare_sat(feparm, timeout);
if (res)
goto tune_error;
if (res)
goto tune_error;
- m_sec_sequence.push_back( eSecCommand(eSecCommand::START_TUNE_TIMEOUT) );
+ m_sec_sequence.push_back( eSecCommand(eSecCommand::START_TUNE_TIMEOUT, timeout) );
m_sec_sequence.push_back( eSecCommand(eSecCommand::SET_FRONTEND) );
break;
}
std::string enable_5V;
char configStr[255];
snprintf(configStr, 255, "config.Nims.%d.terrestrial_5V", m_slotid);
- m_sec_sequence.push_back( eSecCommand(eSecCommand::START_TUNE_TIMEOUT) );
+ m_sec_sequence.push_back( eSecCommand(eSecCommand::START_TUNE_TIMEOUT, timeout) );
ePythonConfigQuery::getConfigValue(configStr, enable_5V);
if (enable_5V == "True")
m_sec_sequence.push_back( eSecCommand(eSecCommand::SET_VOLTAGE, iDVBFrontend::voltage13) );
}
}
- m_tuneTimer->start(0,true);
m_sec_sequence.current() = m_sec_sequence.begin();
- if (m_state != stateTuning)
+ if (!m_simulate)
{
- m_tuning = 1;
- m_state = stateTuning;
- m_stateChanged(this);
+ m_tuneTimer->start(0,true);
+ if (m_state != stateTuning)
+ {
+ m_tuning = 1;
+ m_state = stateTuning;
+ m_stateChanged(this);
+ }
}
+ else
+ tuneLoop();
return res;
switch (voltage)
{
case voltageOff:
- for (int i=0; i < 3; ++i) // reset diseqc
- m_data[i]=-1;
+ m_data[CSW]=m_data[UCSW]=m_data[TONEBURST]=-1; // reset diseqc
vlt = SEC_VOLTAGE_OFF;
break;
case voltage13_5:
default:
return -ENODEV;
}
+ if (m_simulate)
+ return 0;
#if HAVE_DVB_API_VERSION < 3
return ::ioctl(m_secfd, SEC_SET_VOLTAGE, vlt);
#else
default:
return -ENODEV;
}
+ if (m_simulate)
+ return 0;
#if HAVE_DVB_API_VERSION < 3
return ::ioctl(m_secfd, SEC_SET_TONE, tone);
#else
RESULT eDVBFrontend::sendDiseqc(const eDVBDiseqcCommand &diseqc)
{
+ if (m_simulate)
+ return 0;
#if HAVE_DVB_API_VERSION < 3
struct secCommand cmd;
cmd.type = SEC_CMDTYPE_DISEQC_RAW;
#endif
RESULT eDVBFrontend::sendToneburst(int burst)
{
+ if (m_simulate)
+ return 0;
#if HAVE_DVB_API_VERSION < 3
secMiniCmd cmd = SEC_MINI_NONE;
#else
return 0;
}
-RESULT eDVBFrontend::getData(int num, int &data)
+RESULT eDVBFrontend::getData(int num, long &data)
{
if ( num < NUM_DATA_ENTRIES )
{
return -EINVAL;
}
-RESULT eDVBFrontend::setData(int num, int val)
+RESULT eDVBFrontend::setData(int num, long val)
{
if ( num < NUM_DATA_ENTRIES )
{
int eDVBFrontend::isCompatibleWith(ePtr<iDVBFrontendParameters> &feparm)
{
int type;
- if (feparm->getSystem(type) || type != m_type)
+ if (feparm->getSystem(type) || type != m_type || !m_enabled)
return 0;
-
if (m_type == eDVBFrontend::feSatellite)
{
ASSERT(m_sec);
eDVBFrontendParametersSatellite sat_parm;
int ret = feparm->getDVBS(sat_parm);
ASSERT(!ret);
- return m_sec->canTune(sat_parm, this, 1 << m_slotid);
+ if (sat_parm.system == eDVBFrontendParametersSatellite::System::DVB_S2 && !m_can_handle_dvbs2)
+ return 0;
+ ret = m_sec->canTune(sat_parm, this, 1 << m_slotid);
+ if (ret > 1 && sat_parm.system == eDVBFrontendParametersSatellite::System::DVB_S && m_can_handle_dvbs2)
+ ret -= 1;
+ return ret;
}
else if (m_type == eDVBFrontend::feCable)
return 2; // more prio for cable frontends
- return 1;
+ else if (m_type == eDVBFrontend::feTerrestrial)
+ return 1;
+ return 0;
}
-void eDVBFrontend::setSlotInfo(ePyObject obj)
+bool eDVBFrontend::setSlotInfo(ePyObject obj)
{
- ePyObject Id, Descr;
- if (!PyTuple_Check(obj) || PyTuple_Size(obj) != 2)
+ ePyObject Id, Descr, Enabled, IsDVBS2;
+ if (!PyTuple_Check(obj) || PyTuple_Size(obj) != 4)
goto arg_error;
Id = PyTuple_GET_ITEM(obj, 0);
Descr = PyTuple_GET_ITEM(obj, 1);
- if (!PyInt_Check(Id) || !PyString_Check(Descr))
+ Enabled = PyTuple_GET_ITEM(obj, 2);
+ IsDVBS2 = PyTuple_GET_ITEM(obj, 3);
+ if (!PyInt_Check(Id) || !PyString_Check(Descr) || !PyBool_Check(Enabled) || !PyBool_Check(IsDVBS2))
goto arg_error;
strcpy(m_description, PyString_AS_STRING(Descr));
m_slotid = PyInt_AsLong(Id);
-
+ m_enabled = Enabled == Py_True;
// HACK.. the rotor workaround is neede for all NIMs with LNBP21 voltage regulator...
- m_need_rotor_workaround = !!strstr(m_description, "Alps BSBE1") || !!strstr(m_description, "Alps -S");
-
- eDebug("setSlotInfo for dvb frontend %d to slotid %d, descr %s, need rotorworkaround %s",
- m_dvbid, m_slotid, m_description, m_need_rotor_workaround ? "Yes" : "No");
- return;
+ m_need_rotor_workaround = !!strstr(m_description, "Alps BSBE1") ||
+ !!strstr(m_description, "Alps BSBE2") ||
+ !!strstr(m_description, "Alps -S") ||
+ !!strstr(m_description, "BCM4501");
+ m_can_handle_dvbs2 = IsDVBS2 == Py_True;
+ eDebugNoSimulate("setSlotInfo for dvb frontend %d to slotid %d, descr %s, need rotorworkaround %s, enabled %s, DVB-S2 %s",
+ m_dvbid, m_slotid, m_description, m_need_rotor_workaround ? "Yes" : "No", m_enabled ? "Yes" : "No", m_can_handle_dvbs2 ? "Yes" : "No" );
+ return true;
arg_error:
PyErr_SetString(PyExc_StandardError,
- "eDVBFrontend::setSlotInfo must get a tuple with first param slotid and second param slot description");
+ "eDVBFrontend::setSlotInfo must get a tuple with first param slotid, second param slot description and third param enabled boolean");
+ return false;
}