#define parm_u_ofdm_transmission_mode parm.u.ofdm.transmission_mode
#define parm_u_ofdm_guard_interval parm.u.ofdm.guard_interval
#define parm_u_ofdm_hierarchy_information parm.u.ofdm.hierarchy_information
-#ifdef FEC_9_10
- #warning "FEC_9_10 already exist in dvb api ... it seems it is now ready for DVB-S2"
-#else
+#if HAVE_DVB_API_VERSION < 5
#define FEC_S2_QPSK_1_2 (fe_code_rate_t)(FEC_AUTO+1)
#define FEC_S2_QPSK_2_3 (fe_code_rate_t)(FEC_S2_QPSK_1_2+1)
#define FEC_S2_QPSK_3_4 (fe_code_rate_t)(FEC_S2_QPSK_2_3+1)
#define FEC_S2_8PSK_3_5 (fe_code_rate_t)(FEC_S2_8PSK_8_9+1)
#define FEC_S2_8PSK_4_5 (fe_code_rate_t)(FEC_S2_8PSK_3_5+1)
#define FEC_S2_8PSK_9_10 (fe_code_rate_t)(FEC_S2_8PSK_4_5+1)
+#else
+ #define FEC_S2_QPSK_1_2 (fe_code_rate_t)(FEC_1_2)
+ #define FEC_S2_QPSK_2_3 (fe_code_rate_t)(FEC_2_3)
+ #define FEC_S2_QPSK_3_4 (fe_code_rate_t)(FEC_3_4)
+ #define FEC_S2_QPSK_5_6 (fe_code_rate_t)(FEC_5_6)
+ #define FEC_S2_QPSK_7_8 (fe_code_rate_t)(FEC_7_8)
+ #define FEC_S2_QPSK_8_9 (fe_code_rate_t)(FEC_8_9)
+ #define FEC_S2_QPSK_3_5 (fe_code_rate_t)(FEC_3_5)
+ #define FEC_S2_QPSK_4_5 (fe_code_rate_t)(FEC_4_5)
+ #define FEC_S2_QPSK_9_10 (fe_code_rate_t)(FEC_9_10)
#endif
#endif
terrestrial.code_rate_HP != eDVBFrontendParametersTerrestrial::FEC_Auto)
diff = 1 << 30;
else
- diff = abs(terrestrial.frequency - oterrestrial.frequency);
+ diff = abs(terrestrial.frequency - oterrestrial.frequency) / 1000;
return 0;
default:
return -1;
return 0;
case iDVBFrontend::feTerrestrial:
hash = 0xEEEE0000;
- hash |= (terrestrial.frequency/1000)&0xFFFF;
+ hash |= (terrestrial.frequency/1000000)&0xFFFF;
return 0;
default:
return -1;
eDVBFrontend::eDVBFrontend(int adap, int fe, int &ok, bool simulate)
:m_simulate(simulate), m_enabled(false), m_type(-1), m_dvbid(fe), m_slotid(fe)
- ,m_fd(-1), m_need_rotor_workaround(false), m_can_handle_dvbs2(false)
- , m_timeout(0), m_tuneTimer(0)
+ ,m_fd(-1), m_rotor_mode(false), m_need_rotor_workaround(false), m_can_handle_dvbs2(false)
+ ,m_state(stateClosed), m_timeout(0), m_tuneTimer(0)
#if HAVE_DVB_API_VERSION < 3
,m_secfd(-1)
#endif
closeFrontend();
}
+void eDVBFrontend::reopenFrontend()
+{
+ sleep(1);
+ m_type = -1;
+ openFrontend();
+}
+
int eDVBFrontend::openFrontend()
{
- if (m_sn)
+ if (m_state != stateClosed)
return -1; // already opened
m_state=stateIdle;
return 0;
}
-int eDVBFrontend::closeFrontend(bool force)
+int eDVBFrontend::closeFrontend(bool force, bool no_delayed)
{
if (!force && m_data[CUR_VOLTAGE] != -1 && m_data[CUR_VOLTAGE] != iDVBFrontend::voltageOff)
{
eDebugNoSimulate("close frontend %d", m_dvbid);
if (m_data[SATCR] != -1)
{
- turnOffSatCR(m_data[SATCR]);
+ if (!no_delayed)
+ {
+ m_sec->prepareTurnOffSatCR(*this, m_data[SATCR]);
+ m_tuneTimer->start(0, true);
+ if(!m_tuneTimer->isActive())
+ {
+ int timeout=0;
+ eDebug("[turnOffSatCR] no mainloop");
+ while(true)
+ {
+ timeout = tuneLoopInt();
+ if (timeout == -1)
+ break;
+ usleep(timeout*1000); // blockierendes wait.. eTimer gibts ja nicht mehr
+ }
+ }
+ else
+ eDebug("[turnOffSatCR] running mainloop");
+ return 0;
+ }
+ else
+ m_data[ROTOR_CMD] = -1;
}
+
setTone(iDVBFrontend::toneOff);
setVoltage(iDVBFrontend::voltageOff);
m_tuneTimer->stop();
+
if (m_sec && !m_simulate)
- m_sec->setRotorMoving(false);
+ m_sec->setRotorMoving(m_slotid, false);
if (!::close(m_fd))
m_fd=-1;
else
if (res && (errno == EAGAIN))
break;
- if (res)
- {
- eWarning("FE_GET_EVENT failed! %m");
- return;
- }
-
if (w < 0)
continue;
#if HAVE_DVB_API_VERSION < 3
if (event.type == FE_COMPLETION_EV)
#else
- eDebug("(%d)fe event: status %x, inversion %s", m_dvbid, event.status, (event.parameters.inversion == INVERSION_ON) ? "on" : "off");
+ eDebug("(%d)fe event: status %x, inversion %s, m_tuning %d", m_dvbid, event.status, (event.parameters.inversion == INVERSION_ON) ? "on" : "off", m_tuning);
if (event.status & FE_HAS_LOCK)
#endif
{
state = stateLock;
} else
{
- if (m_tuning)
+ if (m_tuning) {
state = stateTuning;
+#if HAVE_DVB_API_VERSION >= 3
+ if (event.status & FE_TIMEDOUT) {
+ eDebug("FE_TIMEDOUT! ..abort");
+ m_tuneTimer->stop();
+ timeout();
+ return;
+ }
+ ++m_tuning;
+#else
+ m_tuneTimer->stop();
+ timeout();
+#endif
+ }
else
{
eDebug("stateLostLock");
state = stateLostLock;
- sec_fe->m_data[CSW] = sec_fe->m_data[UCSW] = sec_fe->m_data[TONEBURST] = -1; // reset diseqc
+ if (!m_rotor_mode)
+ sec_fe->m_data[CSW] = sec_fe->m_data[UCSW] = sec_fe->m_data[TONEBURST] = -1; // reset diseqc
}
}
if (m_state != state)
float SDS_SNRE = snr << 16;
float snr_in_db;
- if (parm_u_qpsk_fec_inner <= FEC_AUTO) // DVB-S1 / QPSK
+ if (oparm.sat.system == eDVBFrontendParametersSatellite::System_DVB_S) // DVB-S1 / QPSK
{
static float SNR_COEFF[6] = {
100.0 / 4194304.0,
float fval1 = SDS_SNRE / 268435456.0,
fval2, fval3, fval4;
- if (parm_u_qpsk_fec_inner <= FEC_S2_QPSK_9_10) // DVB-S2 QPSK
+ if (oparm.sat.modulation == eDVBFrontendParametersSatellite::Modulation_QPSK)
{
fval2 = 6.76;
fval3 = 4.35;
ret = (int)(snr_in_db * 100);
}
else if (strstr(m_description, "Alps BSBE1 C01A") ||
- !strcmp(m_description, "Alps -S(STV0288)"))
+ strstr(m_description, "Alps -S(STV0288)"))
{
if (snr == 0)
ret = 0;
if (snr != 0)
ret = 10 * (int)(-100 * (log10(snr) - log10(255)));
}
- else if (!strcmp(m_description, "BCM4506"))
+ else if (strstr(m_description, "BCM4506") || strstr(m_description, "BCM4505"))
ret = (snr * 100) >> 8;
+ else if (!strcmp(m_description, "CXD1981"))
+ {
+ int mse = (~snr) & 0xFF;
+ switch (parm_u_qam_modulation) {
+ case QAM_16:
+ case QAM_64:
+ case QAM_256: ret = (int)(-950 * log(((double)mse) / 760)); break;
+ case QAM_32:
+ case QAM_128: ret = (int)(-875 * log(((double)mse) / 650)); break;
+
+ default: break;
+ }
+ }
if (type == signalQuality)
{
eDebug("could not create PyObject for %s", key);
}
-void fillDictWithSatelliteData(ePyObject dict, const FRONTENDPARAMETERS &parm, long freq_offset, int orb_pos, int polarization)
+void PutSatelliteDataToDict(ePyObject &dict, eDVBFrontendParametersSatellite &feparm)
+{
+ PutToDict(dict, "tuner_type", "DVB-S");
+ PutToDict(dict, "frequency", feparm.frequency);
+ PutToDict(dict, "symbol_rate", feparm.symbol_rate);
+ PutToDict(dict, "orbital_position", feparm.orbital_position);
+ PutToDict(dict, "inversion", feparm.inversion);
+ PutToDict(dict, "fec_inner", feparm.fec);
+ PutToDict(dict, "modulation", feparm.modulation);
+ PutToDict(dict, "polarization", feparm.polarisation);
+ if (feparm.system == eDVBFrontendParametersSatellite::System_DVB_S2)
+ {
+ PutToDict(dict, "rolloff", feparm.rolloff);
+ PutToDict(dict, "pilot", feparm.pilot);
+ }
+ PutToDict(dict, "system", feparm.system);
+}
+
+void PutTerrestrialDataToDict(ePyObject &dict, eDVBFrontendParametersTerrestrial &feparm)
+{
+ PutToDict(dict, "tuner_type", "DVB-T");
+ PutToDict(dict, "frequency", feparm.frequency);
+ PutToDict(dict, "bandwidth", feparm.bandwidth);
+ PutToDict(dict, "code_rate_lp", feparm.code_rate_LP);
+ PutToDict(dict, "code_rate_hp", feparm.code_rate_HP);
+ PutToDict(dict, "constellation", feparm.modulation);
+ PutToDict(dict, "transmission_mode", feparm.transmission_mode);
+ PutToDict(dict, "guard_interval", feparm.guard_interval);
+ PutToDict(dict, "hierarchy_information", feparm.hierarchy);
+ PutToDict(dict, "inversion", feparm.inversion);
+}
+
+void PutCableDataToDict(ePyObject &dict, eDVBFrontendParametersCable &feparm)
+{
+ PutToDict(dict, "tuner_type", "DVB-C");
+ PutToDict(dict, "frequency", feparm.frequency);
+ PutToDict(dict, "symbol_rate", feparm.symbol_rate);
+ PutToDict(dict, "modulation", feparm.modulation);
+ PutToDict(dict, "inversion", feparm.inversion);
+ PutToDict(dict, "fec_inner", feparm.fec_inner);
+}
+
+#if HAVE_DVB_API_VERSION >= 5
+static void fillDictWithSatelliteData(ePyObject dict, const FRONTENDPARAMETERS &parm, struct dtv_property *p, long freq_offset, int orb_pos, int polarization)
{
long tmp=0;
int frequency = parm_frequency + freq_offset;
case FEC_1_2: tmp = eDVBFrontendParametersSatellite::FEC_1_2; break;
case FEC_2_3: tmp = eDVBFrontendParametersSatellite::FEC_2_3; break;
case FEC_3_4: tmp = eDVBFrontendParametersSatellite::FEC_3_4; break;
+ case FEC_3_5: tmp = eDVBFrontendParametersSatellite::FEC_3_5; break;
+ case FEC_4_5: tmp = eDVBFrontendParametersSatellite::FEC_4_5; break;
+ case FEC_5_6: tmp = eDVBFrontendParametersSatellite::FEC_5_6; break;
+ case FEC_7_8: tmp = eDVBFrontendParametersSatellite::FEC_7_8; break;
+ case FEC_8_9: tmp = eDVBFrontendParametersSatellite::FEC_8_9; break;
+ case FEC_9_10: tmp = eDVBFrontendParametersSatellite::FEC_9_10; break;
+ case FEC_NONE: tmp = eDVBFrontendParametersSatellite::FEC_None; break;
+ case FEC_AUTO: tmp = eDVBFrontendParametersSatellite::FEC_Auto; break;
+ default: eDebug("got unsupported FEC from frontend! report as FEC_AUTO!\n");
+ }
+ PutToDict(dict, "fec_inner", tmp);
+
+ switch (p[0].u.data)
+ {
+ default: eDebug("got unsupported system from frontend! report as DVBS!");
+ case SYS_DVBS: tmp = eDVBFrontendParametersSatellite::System_DVB_S; break;
+ case SYS_DVBS2:
+ {
+ switch (p[2].u.data)
+ {
+ default: eDebug("got unsupported rolloff from frontend! report as 0_20!");
+ case ROLLOFF_20: tmp = eDVBFrontendParametersSatellite::RollOff_alpha_0_20; break;
+ case ROLLOFF_25: tmp = eDVBFrontendParametersSatellite::RollOff_alpha_0_25; break;
+ case ROLLOFF_35: tmp = eDVBFrontendParametersSatellite::RollOff_alpha_0_35; break;
+ }
+ PutToDict(dict, "rolloff", tmp);
+
+ switch (p[3].u.data)
+ {
+ case PILOT_OFF: tmp = eDVBFrontendParametersSatellite::Pilot_Off; break;
+ case PILOT_ON: tmp = eDVBFrontendParametersSatellite::Pilot_On; break;
+ case PILOT_AUTO: tmp = eDVBFrontendParametersSatellite::Pilot_Unknown; break;
+ }
+ PutToDict(dict, "pilot", tmp);
+
+ tmp = eDVBFrontendParametersSatellite::System_DVB_S2; break;
+ }
+ }
+ PutToDict(dict, "system", tmp);
+
+ switch (p[1].u.data)
+ {
+ default: eDebug("got unsupported modulation from frontend! report as QPSK!");
+ case QPSK: tmp = eDVBFrontendParametersSatellite::Modulation_QPSK; break;
+ case PSK_8: tmp = eDVBFrontendParametersSatellite::Modulation_8PSK; break;
+ }
+ PutToDict(dict, "modulation", tmp);
+}
+
+#else
+static void fillDictWithSatelliteData(ePyObject dict, const FRONTENDPARAMETERS &parm, long freq_offset, int orb_pos, int polarization)
+{
+ long tmp=0;
+ int frequency = parm_frequency + freq_offset;
+ PutToDict(dict, "frequency", frequency);
+ PutToDict(dict, "symbol_rate", parm_u_qpsk_symbol_rate);
+ PutToDict(dict, "orbital_position", orb_pos);
+ PutToDict(dict, "polarization", polarization);
+
+ switch((int)parm_u_qpsk_fec_inner)
+ {
+ case FEC_1_2: tmp = eDVBFrontendParametersSatellite::FEC_1_2; break;
+ case FEC_2_3: tmp = eDVBFrontendParametersSatellite::FEC_2_3; break;
+ case FEC_3_4: tmp = eDVBFrontendParametersSatellite::FEC_3_4; break;
case FEC_5_6: tmp = eDVBFrontendParametersSatellite::FEC_5_6; break;
case FEC_7_8: tmp = eDVBFrontendParametersSatellite::FEC_7_8; break;
case FEC_NONE: tmp = eDVBFrontendParametersSatellite::FEC_None; break;
default:
case FEC_AUTO: tmp = eDVBFrontendParametersSatellite::FEC_Auto; break;
#if HAVE_DVB_API_VERSION >=3
- case FEC_S2_8PSK_1_2:
+ case FEC_S2_8PSK_1_2:
case FEC_S2_QPSK_1_2: tmp = eDVBFrontendParametersSatellite::FEC_1_2; break;
case FEC_S2_8PSK_2_3:
case FEC_S2_QPSK_2_3: tmp = eDVBFrontendParametersSatellite::FEC_2_3; break;
#endif
PutToDict(dict, "system", tmp);
}
+#endif
-void fillDictWithCableData(ePyObject dict, const FRONTENDPARAMETERS &parm)
+static void fillDictWithCableData(ePyObject dict, const FRONTENDPARAMETERS &parm)
{
long tmp=0;
#if HAVE_DVB_API_VERSION < 3
PutToDict(dict, "modulation", tmp);
}
-void fillDictWithTerrestrialData(ePyObject dict, const FRONTENDPARAMETERS &parm)
+static void fillDictWithTerrestrialData(ePyObject dict, const FRONTENDPARAMETERS &parm)
{
long tmp=0;
PutToDict(dict, "frequency", parm_frequency);
{
if (dest && PyDict_Check(dest))
{
- switch(m_type)
+ FRONTENDPARAMETERS front;
+#if HAVE_DVB_API_VERSION >= 5
+ struct dtv_property p[4];
+ struct dtv_properties cmdseq;
+ cmdseq.props = p;
+ cmdseq.num = 4;
+ p[0].cmd = DTV_DELIVERY_SYSTEM;
+ p[1].cmd = DTV_MODULATION;
+ p[2].cmd = DTV_ROLLOFF;
+ p[3].cmd = DTV_PILOT;
+#endif
+ if (m_simulate || m_fd == -1 || original)
+ original = true;
+#if HAVE_DVB_API_VERSION >= 5
+ else if (m_type == feSatellite && // yet just use new api for DVB-S(2) only
+ ioctl(m_fd, FE_GET_PROPERTY, &cmdseq)<0)
{
- case feSatellite:
- case feCable:
- case feTerrestrial:
+ eDebug("FE_GET_PROPERTY failed (%m)");
+ original = true;
+ }
+#endif
+ else if (ioctl(m_fd, FE_GET_FRONTEND, &front)<0)
+ {
+ eDebug("FE_GET_FRONTEND failed (%m)");
+ original = true;
+ }
+ if (original)
+ {
+ switch(m_type)
{
- FRONTENDPARAMETERS front;
- if (m_fd == -1 && !original)
- original = true;
- else if (ioctl(m_fd, FE_GET_FRONTEND, &front)<0)
- {
- eDebug("FE_GET_FRONTEND failed (%m)");
- original = true;
- }
- {
- const FRONTENDPARAMETERS &parm = original || m_simulate ? this->parm : front;
- long tmp = eDVBFrontendParametersSatellite::Inversion_Unknown;
- switch(parm_inversion & 3)
- {
- case INVERSION_ON:
- tmp = eDVBFrontendParametersSatellite::Inversion_On;
- break;
- case INVERSION_OFF:
- tmp = eDVBFrontendParametersSatellite::Inversion_Off;
- default:
- break;
- }
- PutToDict(dest, "inversion", tmp);
-
- switch(m_type)
- {
- case feSatellite:
- fillDictWithSatelliteData(dest, original?parm:front, m_data[FREQ_OFFSET], m_cur_orbpos, m_cur_pol);
- break;
- case feCable:
- fillDictWithCableData(dest, original?parm:front);
- break;
- case feTerrestrial:
- fillDictWithTerrestrialData(dest, original?parm:front);
- break;
- }
- }
+ case feSatellite:
+ PutSatelliteDataToDict(dest, oparm.sat);
+ break;
+ case feCable:
+ PutCableDataToDict(dest, oparm.cab);
+ break;
+ case feTerrestrial:
+ PutTerrestrialDataToDict(dest, oparm.ter);
+ break;
+ }
+ }
+ else
+ {
+ FRONTENDPARAMETERS &parm = front;
+ long tmp = eDVBFrontendParametersSatellite::Inversion_Unknown;
+ switch(parm_inversion & 3)
+ {
+ case INVERSION_ON:
+ tmp = eDVBFrontendParametersSatellite::Inversion_On;
+ break;
+ case INVERSION_OFF:
+ tmp = eDVBFrontendParametersSatellite::Inversion_Off;
+ default:
+ break;
+ }
+ PutToDict(dest, "inversion", tmp);
+ switch(m_type)
+ {
+ case feSatellite:
+#if HAVE_DVB_API_VERSION >= 5
+ fillDictWithSatelliteData(dest, parm, p, m_data[FREQ_OFFSET], oparm.sat.orbital_position, oparm.sat.polarisation);
+#else
+ fillDictWithSatelliteData(dest, parm, m_data[FREQ_OFFSET], oparm.sat.orbital_position, oparm.sat.polarisation);
+#endif
+ break;
+ case feCable:
+ fillDictWithCableData(dest, parm);
+ break;
+ case feTerrestrial:
+ fillDictWithTerrestrialData(dest, parm);
+ break;
}
- default:
- break;
}
}
}
return 0;
int power=m_slotid; // this is needed for read inputpower from the correct tuner !
char proc_name[64];
- sprintf(proc_name, "/proc/stb/fp/lnb_sense%d", m_slotid);
- FILE *f=fopen(proc_name, "r");
- if (f)
+ char proc_name2[64];
+ sprintf(proc_name, "/proc/stb/frontend/%d/lnb_sense", m_slotid);
+ sprintf(proc_name2, "/proc/stb/fp/lnb_sense%d", m_slotid);
+ FILE *f;
+ if ((f=fopen(proc_name, "r")) || (f=fopen(proc_name2, "r")))
{
if (fscanf(f, "%d", &power) != 1)
eDebug("read %s failed!! (%m)", proc_name);
return true;
}
-void eDVBFrontend::tuneLoop() // called by m_tuneTimer
+void eDVBFrontend::tuneLoop()
{
- int delay=0;
+ tuneLoopInt();
+}
+
+int eDVBFrontend::tuneLoopInt() // called by m_tuneTimer
+{
+ int delay=-1;
eDVBFrontend *sec_fe = this;
eDVBRegisteredFrontend *regFE = 0;
long tmp = m_data[LINKED_PREV_PTR];
state = sec_fe->m_state;
}
// sec_fe is closed... we must reopen it here..
- if (state == eDVBFrontend::stateClosed)
+ if (state == stateClosed)
{
regFE = prev;
prev->inc_use();
{
long *sec_fe_data = sec_fe->m_data;
// eDebugNoSimulate("tuneLoop %d\n", m_sec_sequence.current()->cmd);
+ delay = 0;
switch (m_sec_sequence.current()->cmd)
{
case eSecCommand::SLEEP:
sec_fe->sendToneburst(m_sec_sequence.current()++->toneburst);
break;
case eSecCommand::SET_FRONTEND:
- eDebugNoSimulate("[SEC] setFrontend");
- setFrontend();
- ++m_sec_sequence.current();
+ {
+ int enableEvents = (m_sec_sequence.current()++)->val;
+ eDebugNoSimulate("[SEC] setFrontend %d", enableEvents);
+ setFrontend(enableEvents);
break;
+ }
case eSecCommand::START_TUNE_TIMEOUT:
{
+ int tuneTimeout = m_sec_sequence.current()->timeout;
+ eDebugNoSimulate("[SEC] startTuneTimeout %d", tuneTimeout);
if (!m_simulate)
- m_timeout->start(m_sec_sequence.current()->timeout, 1);
+ m_timeout->start(tuneTimeout, 1);
++m_sec_sequence.current();
break;
}
int signal = 0;
int isLocked = readFrontendData(locked);
m_idleInputpower[0] = m_idleInputpower[1] = 0;
- if (isLocked && ((abs((signal = readFrontendData(signalQualitydB)) - cmd.lastSignal) < 50) || !cmd.lastSignal))
+ --m_timeoutCount;
+ if (!m_timeoutCount && m_retryCount > 0)
+ --m_retryCount;
+ if (isLocked && ((abs((signal = readFrontendData(signalQualitydB)) - cmd.lastSignal) < 40) || !cmd.lastSignal))
{
if (cmd.lastSignal)
eDebugNoSimulate("[SEC] locked step %d ok (%d %d)", cmd.okcount, signal, cmd.lastSignal);
else
{
eDebugNoSimulate("[SEC] locked step %d ok", cmd.okcount);
- cmd.lastSignal = signal;
+ if (!cmd.okcount)
+ cmd.lastSignal = signal;
}
++cmd.okcount;
if (cmd.okcount > 4)
{
- eDebugNoSimulate("ok > 4 .. goto %d\n",cmd.steps);
+ eDebugNoSimulate("ok > 4 .. goto %d\n", cmd.steps);
setSecSequencePos(cmd.steps);
m_state = stateLock;
m_stateChanged(this);
- feEvent(-1);
+ feEvent(-1); // flush events
m_sn->start();
break;
}
eDebugNoSimulate("[SEC] rotor locked step %d failed (oldSignal %d, curSignal %d)", cmd.okcount, signal, cmd.lastSignal);
else
eDebugNoSimulate("[SEC] rotor locked step %d failed (not locked)", cmd.okcount);
- --m_timeoutCount;
- if (!m_timeoutCount && m_retryCount > 0)
- --m_retryCount;
cmd.okcount=0;
cmd.lastSignal=0;
}
break;
case eSecCommand::SET_ROTOR_MOVING:
if (!m_simulate)
- m_sec->setRotorMoving(true);
+ m_sec->setRotorMoving(m_slotid, true);
++m_sec_sequence.current();
break;
case eSecCommand::SET_ROTOR_STOPPED:
if (!m_simulate)
- m_sec->setRotorMoving(false);
+ m_sec->setRotorMoving(m_slotid, false);
++m_sec_sequence.current();
break;
case eSecCommand::IF_INPUTPOWER_DELTA_GOTO:
}
int idleInputpower = m_idleInputpower[ (sec_fe_data[CUR_VOLTAGE]&1) ? 0 : 1];
const char *txt = cmd.direction ? "running" : "stopped";
+ --m_timeoutCount;
+ if (!m_timeoutCount && m_retryCount > 0)
+ --m_retryCount;
eDebugNoSimulate("[SEC] waiting for rotor %s %d, idle %d, delta %d",
txt,
m_runningInputpower,
else
{
eDebugNoSimulate("[SEC] rotor not %s... reset counter.. increase timeout", txt);
- --m_timeoutCount;
- if (!m_timeoutCount && m_retryCount > 0)
- --m_retryCount;
cmd.okcount=0;
}
++m_sec_sequence.current();
++m_sec_sequence.current();
break;
}
+ case eSecCommand::DELAYED_CLOSE_FRONTEND:
+ {
+ eDebugNoSimulate("[SEC] delayed close frontend");
+ closeFrontend(false, true);
+ ++m_sec_sequence.current();
+ break;
+ }
default:
eDebugNoSimulate("[SEC] unhandled sec command %d",
++m_sec_sequence.current()->cmd);
regFE->dec_use();
if (m_simulate && m_sec_sequence.current() != m_sec_sequence.end())
tuneLoop();
+ return delay;
}
-void eDVBFrontend::setFrontend()
+void eDVBFrontend::setFrontend(bool recvEvents)
{
if (!m_simulate)
{
eDebug("setting frontend %d", m_dvbid);
- m_sn->start();
- feEvent(-1);
- if (ioctl(m_fd, FE_SET_FRONTEND, &parm) == -1)
+ if (recvEvents)
+ m_sn->start();
+ feEvent(-1); // flush events
+#if HAVE_DVB_API_VERSION >= 5
+ if (m_type == iDVBFrontend::feSatellite)
+ {
+ fe_rolloff_t rolloff = ROLLOFF_35;
+ fe_pilot_t pilot = PILOT_OFF;
+ fe_modulation_t modulation = QPSK;
+ fe_delivery_system_t system = SYS_DVBS;
+ switch(oparm.sat.system)
+ {
+ case eDVBFrontendParametersSatellite::System_DVB_S: system = SYS_DVBS; break;
+ case eDVBFrontendParametersSatellite::System_DVB_S2: system = SYS_DVBS2; break;
+ };
+ switch(oparm.sat.modulation)
+ {
+ case eDVBFrontendParametersSatellite::Modulation_QPSK: modulation = QPSK; break;
+ case eDVBFrontendParametersSatellite::Modulation_8PSK: modulation = PSK_8; break;
+ case eDVBFrontendParametersSatellite::Modulation_QAM16: modulation = QAM_16; break;
+ };
+ switch(oparm.sat.pilot)
+ {
+ case eDVBFrontendParametersSatellite::Pilot_Off: pilot = PILOT_OFF; break;
+ case eDVBFrontendParametersSatellite::Pilot_On: pilot = PILOT_ON; break;
+ case eDVBFrontendParametersSatellite::Pilot_Unknown: pilot = PILOT_AUTO; break;
+ };
+ switch(oparm.sat.rolloff)
+ {
+ case eDVBFrontendParametersSatellite::RollOff_alpha_0_20: rolloff = ROLLOFF_20; break;
+ case eDVBFrontendParametersSatellite::RollOff_alpha_0_25: rolloff = ROLLOFF_25; break;
+ case eDVBFrontendParametersSatellite::RollOff_alpha_0_35: rolloff = ROLLOFF_35; break;
+ };
+ struct dtv_property p[10];
+ struct dtv_properties cmdseq;
+ cmdseq.props = p;
+ p[0].cmd = DTV_CLEAR;
+ p[1].cmd = DTV_DELIVERY_SYSTEM, p[1].u.data = system;
+ p[2].cmd = DTV_FREQUENCY, p[2].u.data = parm_frequency;
+ p[3].cmd = DTV_MODULATION, p[3].u.data = modulation;
+ p[4].cmd = DTV_SYMBOL_RATE, p[4].u.data = parm_u_qpsk_symbol_rate;
+ p[5].cmd = DTV_INNER_FEC, p[5].u.data = parm_u_qpsk_fec_inner;
+ p[6].cmd = DTV_INVERSION, p[6].u.data = parm_inversion;
+ if (system == SYS_DVBS2)
+ {
+ p[7].cmd = DTV_ROLLOFF, p[7].u.data = rolloff;
+ p[8].cmd = DTV_PILOT, p[8].u.data = pilot;
+ p[9].cmd = DTV_TUNE;
+ cmdseq.num = 10;
+ }
+ else
+ {
+ p[7].cmd = DTV_TUNE;
+ cmdseq.num = 8;
+ }
+ if (ioctl(m_fd, FE_SET_PROPERTY, &cmdseq) == -1)
+ {
+ perror("FE_SET_PROPERTY failed");
+ return;
+ }
+ }
+ else
+#endif
{
- perror("FE_SET_FRONTEND failed");
- return;
+ if (ioctl(m_fd, FE_SET_FRONTEND, &parm) == -1)
+ {
+ perror("FE_SET_FRONTEND failed");
+ return;
+ }
}
}
}
feparm.fec,
feparm.orbital_position);
#endif
- m_cur_pol = feparm.polarisation;
- m_cur_orbpos = feparm.orbital_position;
parm_u_qpsk_symbol_rate = feparm.symbol_rate;
switch (feparm.inversion)
{
break;
}
if (feparm.system == eDVBFrontendParametersSatellite::System_DVB_S)
+ {
switch (feparm.fec)
{
case eDVBFrontendParametersSatellite::FEC_None:
parm_u_qpsk_fec_inner = FEC_AUTO;
break;
}
+ }
#if HAVE_DVB_API_VERSION >= 3
else // DVB_S2
{
eDebugNoSimulate("no valid fec for DVB-S2 set.. abort !!");
return -EINVAL;
}
+#if HAVE_DVB_API_VERSION < 5
parm_inversion |= (feparm.rolloff << 2); // Hack.. we use bit 2..3 of inversion param for rolloff
parm_inversion |= (feparm.pilot << 4); // Hack.. we use bit 4..5 of inversion param for pilot
- if (feparm.modulation == eDVBFrontendParametersSatellite::Modulation_8PSK) {
+ if (feparm.modulation == eDVBFrontendParametersSatellite::Modulation_8PSK)
+ {
parm_u_qpsk_fec_inner = (fe_code_rate_t)((int)parm_u_qpsk_fec_inner+9);
// 8PSK fec driver values are decimal 9 bigger
}
+#endif
}
#endif
// FIXME !!! get frequency range from tuner
}
eDebugNoSimulate("tuning to %d mhz", parm_frequency/1000);
}
+ oparm.sat = feparm;
return res;
}
parm_u_qam_fec_inner,
parm_u_qam_modulation,
parm_inversion);
+ oparm.cab = feparm;
return 0;
}
parm_inversion = INVERSION_AUTO;
break;
}
+ oparm.ter = feparm;
return 0;
}
res = -EINVAL;
goto tune_error;
}
+ if (m_rotor_mode != feparm.no_rotor_command_on_tune && !feparm.no_rotor_command_on_tune)
+ {
+ eDVBFrontend *sec_fe = this;
+ long tmp = m_data[LINKED_PREV_PTR];
+ while (tmp != -1)
+ {
+ eDVBRegisteredFrontend *linked_fe = (eDVBRegisteredFrontend*)tmp;
+ sec_fe = linked_fe->m_frontend;
+ sec_fe->getData(LINKED_NEXT_PTR, tmp);
+ }
+ eDebug("(fe%d) reset diseqc after leave rotor mode!", m_dvbid);
+ sec_fe->m_data[CSW] = sec_fe->m_data[UCSW] = sec_fe->m_data[TONEBURST] = sec_fe->m_data[ROTOR_CMD] = sec_fe->m_data[ROTOR_POS] = -1; // reset diseqc
+ }
+ m_rotor_mode = feparm.no_rotor_command_on_tune;
if (!m_simulate)
- m_sec->setRotorMoving(false);
+ m_sec->setRotorMoving(m_slotid, false);
res=prepare_sat(feparm, timeout);
if (res)
goto tune_error;
goto tune_error;
m_sec_sequence.push_back( eSecCommand(eSecCommand::START_TUNE_TIMEOUT, timeout) );
- m_sec_sequence.push_back( eSecCommand(eSecCommand::SET_FRONTEND) );
+ m_sec_sequence.push_back( eSecCommand(eSecCommand::SET_FRONTEND, 1) );
break;
}
case feTerrestrial:
m_sec_sequence.push_back( eSecCommand(eSecCommand::SET_VOLTAGE, iDVBFrontend::voltage13) );
else
m_sec_sequence.push_back( eSecCommand(eSecCommand::SET_VOLTAGE, iDVBFrontend::voltageOff) );
- m_sec_sequence.push_back( eSecCommand(eSecCommand::SET_FRONTEND) );
+ m_sec_sequence.push_back( eSecCommand(eSecCommand::SET_FRONTEND, 1) );
break;
}
if (!m_simulate)
{
m_tuneTimer->start(0,true);
+ m_tuning = 1;
if (m_state != stateTuning)
{
- m_tuning = 1;
m_state = stateTuning;
m_stateChanged(this);
}
return 0;
}
-RESULT eDVBFrontend::setSecSequence(const eSecCommandList &list)
+RESULT eDVBFrontend::setSecSequence(eSecCommandList &list)
{
- m_sec_sequence = list;
+ if (m_data[SATCR] != -1 && m_sec_sequence.current() != m_sec_sequence.end())
+ m_sec_sequence.push_back(list);
+ else
+ m_sec_sequence = list;
return 0;
}
bool eDVBFrontend::setSlotInfo(ePyObject obj)
{
- ePyObject Id, Descr, Enabled, IsDVBS2;
- if (!PyTuple_Check(obj) || PyTuple_Size(obj) != 4)
+ ePyObject Id, Descr, Enabled, IsDVBS2, frontendId;
+ if (!PyTuple_Check(obj) || PyTuple_Size(obj) != 5)
goto arg_error;
Id = PyTuple_GET_ITEM(obj, 0);
Descr = PyTuple_GET_ITEM(obj, 1);
Enabled = PyTuple_GET_ITEM(obj, 2);
IsDVBS2 = PyTuple_GET_ITEM(obj, 3);
- if (!PyInt_Check(Id) || !PyString_Check(Descr) || !PyBool_Check(Enabled) || !PyBool_Check(IsDVBS2))
+ frontendId = PyTuple_GET_ITEM(obj, 4);
+ m_slotid = PyInt_AsLong(Id);
+ if (!PyInt_Check(Id) || !PyString_Check(Descr) || !PyBool_Check(Enabled) || !PyBool_Check(IsDVBS2) || !PyInt_Check(frontendId))
goto arg_error;
strcpy(m_description, PyString_AS_STRING(Descr));
- m_slotid = PyInt_AsLong(Id);
+ if (PyInt_AsLong(frontendId) == -1 || PyInt_AsLong(frontendId) != m_dvbid) {
+// eDebugNoSimulate("skip slotinfo for slotid %d, descr %s",
+// m_slotid, m_description);
+ return false;
+ }
m_enabled = Enabled == Py_True;
// HACK.. the rotor workaround is neede for all NIMs with LNBP21 voltage regulator...
m_need_rotor_workaround = !!strstr(m_description, "Alps BSBE1") ||
"eDVBFrontend::setSlotInfo must get a tuple with first param slotid, second param slot description and third param enabled boolean");
return false;
}
-
-RESULT eDVBFrontend::turnOffSatCR(int satcr)
-{
- eSecCommandList sec_sequence;
- // check if voltage is disabled
- eSecCommand::pair compare;
- compare.steps = +9; //nothing to do
- compare.voltage = iDVBFrontend::voltageOff;
- sec_sequence.push_back( eSecCommand(eSecCommand::IF_NOT_VOLTAGE_GOTO, compare) );
- sec_sequence.push_back( eSecCommand(eSecCommand::SET_VOLTAGE, iDVBFrontend::voltage13) );
- sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, 50 ) );
-
- sec_sequence.push_back( eSecCommand(eSecCommand::SET_VOLTAGE, iDVBFrontend::voltage18_5) );
- sec_sequence.push_back( eSecCommand(eSecCommand::SET_TONE, iDVBFrontend::toneOff) );
- sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, 250) );
-
- eDVBDiseqcCommand diseqc;
- memset(diseqc.data, 0, MAX_DISEQC_LENGTH);
- diseqc.len = 5;
- diseqc.data[0] = 0xE0;
- diseqc.data[1] = 0x10;
- diseqc.data[2] = 0x5A;
- diseqc.data[3] = satcr << 5;
- diseqc.data[4] = 0x00;
-
- sec_sequence.push_back( eSecCommand(eSecCommand::SEND_DISEQC, diseqc) );
- sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, 50+20+14*diseqc.len) );
- sec_sequence.push_back( eSecCommand(eSecCommand::SET_VOLTAGE, iDVBFrontend::voltage13) );
- setSecSequence(sec_sequence);
- return 0;
-}
-
-RESULT eDVBFrontend::ScanSatCR()
-{
- setFrontend();
- usleep(20000);
- setTone(iDVBFrontend::toneOff);
- return 0;
-}