#ifndef __ebase_h #define __ebase_h #include #include #include #include #include #include #include #include class eApplication; extern eApplication* eApp; static inline bool operator<( const timeval &t1, const timeval &t2 ) { return t1.tv_sec < t2.tv_sec || (t1.tv_sec == t2.tv_sec && t1.tv_usec < t2.tv_usec); } static inline timeval &operator+=( timeval &t1, const timeval &t2 ) { t1.tv_sec += t2.tv_sec; if ( (t1.tv_usec += t2.tv_usec) >= 1000000 ) { t1.tv_sec++; t1.tv_usec -= 1000000; } return t1; } static inline timeval operator+( const timeval &t1, const timeval &t2 ) { timeval tmp; tmp.tv_sec = t1.tv_sec + t2.tv_sec; if ( (tmp.tv_usec = t1.tv_usec + t2.tv_usec) >= 1000000 ) { tmp.tv_sec++; tmp.tv_usec -= 1000000; } return tmp; } static inline timeval operator-( const timeval &t1, const timeval &t2 ) { timeval tmp; tmp.tv_sec = t1.tv_sec - t2.tv_sec; if ( (tmp.tv_usec = t1.tv_usec - t2.tv_usec) < 0 ) { tmp.tv_sec--; tmp.tv_usec += 1000000; } return tmp; } static inline timeval operator-=( timeval &t1, const timeval &t2 ) { t1.tv_sec -= t2.tv_sec; if ( (t1.tv_usec -= t2.tv_usec) < 0 ) { t1.tv_sec--; t1.tv_usec += 1000000; } return t1; } static inline timeval &operator+=( timeval &t1, const long msek ) { t1.tv_sec += msek / 1000; if ( (t1.tv_usec += (msek % 1000) * 1000) >= 1000000 ) { t1.tv_sec++; t1.tv_usec -= 1000000; } return t1; } static inline timeval operator+( const timeval &t1, const long msek ) { timeval tmp; tmp.tv_sec = t1.tv_sec + msek / 1000; if ( (tmp.tv_usec = t1.tv_usec + (msek % 1000) * 1000) >= 1000000 ) { tmp.tv_sec++; tmp.tv_usec -= 1000000; } return tmp; } static inline timeval operator-( const timeval &t1, const long msek ) { timeval tmp; tmp.tv_sec = t1.tv_sec - msek / 1000; if ( (tmp.tv_usec = t1.tv_usec - (msek % 1000)*1000) < 0 ) { tmp.tv_sec--; tmp.tv_usec += 1000000; } return tmp; } static inline timeval operator-=( timeval &t1, const long msek ) { t1.tv_sec -= msek / 1000; if ( (t1.tv_usec -= (msek % 1000) * 1000) < 0 ) { t1.tv_sec--; t1.tv_usec += 1000000; } return t1; } static inline timeval timeout_timeval ( const timeval & orig ) { timeval now; gettimeofday(&now,0); return orig-now; } static inline long timeout_usec ( const timeval & orig ) { timeval now; gettimeofday(&now,0); return (orig-now).tv_sec*1000000 + (orig-now).tv_usec; } class eMainloop; // die beiden signalquellen: SocketNotifier... /** * \brief Gives a callback when data on a file descriptor is ready. * * This class emits the signal \c eSocketNotifier::activate whenever the * event specified by \c req is available. */ class eSocketNotifier { public: enum { Read=POLLIN, Write=POLLOUT, Priority=POLLPRI, Error=POLLERR, Hungup=POLLHUP }; private: eMainloop &context; int fd; int state; int requested; // requested events (POLLIN, ...) public: /** * \brief Constructs a eSocketNotifier. * \param context The thread where to bind the socketnotifier to. The signal is emitted from that thread. * \param fd The filedescriptor to monitor. Can be a device or a socket. * \param req The events to watch to, normally either \c Read or \c Write. You can specify any events that \c poll supports. * \param startnow Specifies if the socketnotifier should start immediately. */ eSocketNotifier(eMainloop *context, int fd, int req, bool startnow=true); ~eSocketNotifier(); Signal1 activated; void activate(int what) { /*emit*/ activated(what); } void start(); void stop(); bool isRunning() { return state; } int getFD() { return fd; } int getRequested() { return requested; } void setRequested(int req) { requested=req; } }; // ... und Timer /** * \brief Gives a callback after a specified timeout. * * This class emits the signal \c eTimer::timeout after the specified timeout. */ class eTimer { eMainloop &context; timeval nextActivation; long interval; bool bSingleShot; bool bActive; public: /** * \brief Constructs a timer. * * The timer is not yet active, it has to be started with \c start. * \param context The thread from which the signal should be emitted. */ eTimer(eMainloop *context): context(*context), bActive(false) { } ~eTimer() { if (bActive) stop(); } Signal0 timeout; void activate(); bool isActive() { return bActive; } timeval &getNextActivation() { return nextActivation; } void start(long msec, bool singleShot=false); void stop(); void changeInterval(long msek); bool operator<(const eTimer& t) const { return nextActivation < t.nextActivation; } }; // werden in einer mainloop verarbeitet class eMainloop { std::map notifiers; ePtrList TimerList; bool app_exit_loop; bool app_quit_now; int loop_level; void processOneEvent(); int retval; public: eMainloop():app_quit_now(0),loop_level(0),retval(0){ } void addSocketNotifier(eSocketNotifier *sn); void removeSocketNotifier(eSocketNotifier *sn); void addTimer(eTimer* e) { TimerList.push_back(e); TimerList.sort(); } void removeTimer(eTimer* e) { TimerList.remove(e); } int looplevel() { return loop_level; } int exec(); // recursive enter the loop void quit(int ret=0); // leave all pending loops (recursive leave()) void enter_loop(); void exit_loop(); }; /** * \brief The application class. * * An application provides a mainloop, and runs in the primary thread. * You can have other threads, too, but this is the primary one. */ class eApplication: public eMainloop { public: eApplication() { if (!eApp) eApp = this; } ~eApplication() { eApp = 0; } }; #endif