#include #include #include // access to python config #include #include #include #include #ifndef I2C_SLAVE_FORCE #define I2C_SLAVE_FORCE 0x0706 #endif #if HAVE_DVB_API_VERSION < 3 #include #include #define QAM_AUTO (Modulation)6 #define TRANSMISSION_MODE_AUTO (TransmitMode)2 #define BANDWIDTH_AUTO (BandWidth)3 #define GUARD_INTERVAL_AUTO (GuardInterval)4 #define HIERARCHY_AUTO (Hierarchy)4 #define parm_frequency parm.Frequency #define parm_inversion parm.Inversion #define parm_u_qpsk_symbol_rate parm.u.qpsk.SymbolRate #define parm_u_qpsk_fec_inner parm.u.qpsk.FEC_inner #define parm_u_qam_symbol_rate parm.u.qam.SymbolRate #define parm_u_qam_fec_inner parm.u.qam.FEC_inner #define parm_u_qam_modulation parm.u.qam.QAM #define parm_u_ofdm_bandwidth parm.u.ofdm.bandWidth #define parm_u_ofdm_code_rate_LP parm.u.ofdm.LP_CodeRate #define parm_u_ofdm_code_rate_HP parm.u.ofdm.HP_CodeRate #define parm_u_ofdm_constellation parm.u.ofdm.Constellation #define parm_u_ofdm_transmission_mode parm.u.ofdm.TransmissionMode #define parm_u_ofdm_guard_interval parm.u.ofdm.guardInterval #define parm_u_ofdm_hierarchy_information parm.u.ofdm.HierarchyInformation #else #include #define parm_frequency parm.frequency #define parm_inversion parm.inversion #define parm_u_qpsk_symbol_rate parm.u.qpsk.symbol_rate #define parm_u_qpsk_fec_inner parm.u.qpsk.fec_inner #define parm_u_qam_symbol_rate parm.u.qam.symbol_rate #define parm_u_qam_fec_inner parm.u.qam.fec_inner #define parm_u_qam_modulation parm.u.qam.modulation #define parm_u_ofdm_bandwidth parm.u.ofdm.bandwidth #define parm_u_ofdm_code_rate_LP parm.u.ofdm.code_rate_LP #define parm_u_ofdm_code_rate_HP parm.u.ofdm.code_rate_HP #define parm_u_ofdm_constellation parm.u.ofdm.constellation #define parm_u_ofdm_transmission_mode parm.u.ofdm.transmission_mode #define parm_u_ofdm_guard_interval parm.u.ofdm.guard_interval #define parm_u_ofdm_hierarchy_information parm.u.ofdm.hierarchy_information #ifdef FEC_9_10 #warning "FEC_9_10 already exist in dvb api ... it seems it is now ready for DVB-S2" #else #define FEC_S2_QPSK_1_2 (fe_code_rate_t)(FEC_AUTO+1) #define FEC_S2_QPSK_2_3 (fe_code_rate_t)(FEC_S2_QPSK_1_2+1) #define FEC_S2_QPSK_3_4 (fe_code_rate_t)(FEC_S2_QPSK_2_3+1) #define FEC_S2_QPSK_5_6 (fe_code_rate_t)(FEC_S2_QPSK_3_4+1) #define FEC_S2_QPSK_7_8 (fe_code_rate_t)(FEC_S2_QPSK_5_6+1) #define FEC_S2_QPSK_8_9 (fe_code_rate_t)(FEC_S2_QPSK_7_8+1) #define FEC_S2_QPSK_3_5 (fe_code_rate_t)(FEC_S2_QPSK_8_9+1) #define FEC_S2_QPSK_4_5 (fe_code_rate_t)(FEC_S2_QPSK_3_5+1) #define FEC_S2_QPSK_9_10 (fe_code_rate_t)(FEC_S2_QPSK_4_5+1) #define FEC_S2_8PSK_1_2 (fe_code_rate_t)(FEC_S2_QPSK_9_10+1) #define FEC_S2_8PSK_2_3 (fe_code_rate_t)(FEC_S2_8PSK_1_2+1) #define FEC_S2_8PSK_3_4 (fe_code_rate_t)(FEC_S2_8PSK_2_3+1) #define FEC_S2_8PSK_5_6 (fe_code_rate_t)(FEC_S2_8PSK_3_4+1) #define FEC_S2_8PSK_7_8 (fe_code_rate_t)(FEC_S2_8PSK_5_6+1) #define FEC_S2_8PSK_8_9 (fe_code_rate_t)(FEC_S2_8PSK_7_8+1) #define FEC_S2_8PSK_3_5 (fe_code_rate_t)(FEC_S2_8PSK_8_9+1) #define FEC_S2_8PSK_4_5 (fe_code_rate_t)(FEC_S2_8PSK_3_5+1) #define FEC_S2_8PSK_9_10 (fe_code_rate_t)(FEC_S2_8PSK_4_5+1) #endif #endif #include #include #include void eDVBDiseqcCommand::setCommandString(const char *str) { if (!str) return; len=0; int slen = strlen(str); if (slen % 2) { eDebug("invalid diseqc command string length (not 2 byte aligned)"); return; } if (slen > MAX_DISEQC_LENGTH*2) { eDebug("invalid diseqc command string length (string is to long)"); return; } unsigned char val=0; for (int i=0; i < slen; ++i) { unsigned char c = str[i]; switch(c) { case '0' ... '9': c-=48; break; case 'a' ... 'f': c-=87; break; case 'A' ... 'F': c-=55; break; default: eDebug("invalid character in hex string..ignore complete diseqc command !"); return; } if ( i % 2 ) { val |= c; data[i/2] = val; } else val = c << 4; } len = slen/2; } void eDVBFrontendParametersSatellite::set(const SatelliteDeliverySystemDescriptor &descriptor) { frequency = descriptor.getFrequency() * 10; symbol_rate = descriptor.getSymbolRate() * 100; polarisation = descriptor.getPolarization(); fec = descriptor.getFecInner(); if ( fec != FEC::fNone && fec > FEC::f9_10 ) fec = FEC::fAuto; inversion = Inversion::Unknown; orbital_position = ((descriptor.getOrbitalPosition() >> 12) & 0xF) * 1000; orbital_position += ((descriptor.getOrbitalPosition() >> 8) & 0xF) * 100; orbital_position += ((descriptor.getOrbitalPosition() >> 4) & 0xF) * 10; orbital_position += ((descriptor.getOrbitalPosition()) & 0xF); if (orbital_position && (!descriptor.getWestEastFlag())) orbital_position = 3600 - orbital_position; system = descriptor.getModulationSystem(); modulation = descriptor.getModulation(); if (system == System::DVB_S && modulation == Modulation::M8PSK) { eDebug("satellite_delivery_descriptor non valid modulation type.. force QPSK"); modulation=QPSK; } roll_off = descriptor.getRollOff(); if (system == System::DVB_S2) { eDebug("SAT DVB-S2 freq %d, %s, pos %d, sr %d, fec %d, modulation %d, roll_off %d", frequency, polarisation ? "hor" : "vert", orbital_position, symbol_rate, fec, modulation, roll_off); } else { eDebug("SAT DVB-S freq %d, %s, pos %d, sr %d, fec %d", frequency, polarisation ? "hor" : "vert", orbital_position, symbol_rate, fec); } } void eDVBFrontendParametersCable::set(const CableDeliverySystemDescriptor &descriptor) { frequency = descriptor.getFrequency() / 10; symbol_rate = descriptor.getSymbolRate() * 100; fec_inner = descriptor.getFecInner(); if ( fec_inner == 0xF ) fec_inner = FEC::fNone; modulation = descriptor.getModulation(); if ( modulation > 0x5 ) modulation = Modulation::Auto; inversion = Inversion::Unknown; eDebug("Cable freq %d, mod %d, sr %d, fec %d", frequency, modulation, symbol_rate, fec_inner); } void eDVBFrontendParametersTerrestrial::set(const TerrestrialDeliverySystemDescriptor &descriptor) { frequency = descriptor.getCentreFrequency() * 10; bandwidth = descriptor.getBandwidth(); if ( bandwidth > 2 ) // 5Mhz forced to auto bandwidth = Bandwidth::BwAuto; code_rate_HP = descriptor.getCodeRateHpStream(); if (code_rate_HP > 4) code_rate_HP = FEC::fAuto; code_rate_LP = descriptor.getCodeRateLpStream(); if (code_rate_LP > 4) code_rate_LP = FEC::fAuto; transmission_mode = descriptor.getTransmissionMode(); if (transmission_mode > 1) // TM4k forced to auto transmission_mode = TransmissionMode::TMAuto; guard_interval = descriptor.getGuardInterval(); if (guard_interval > 3) guard_interval = GuardInterval::GI_Auto; hierarchy = descriptor.getHierarchyInformation()&3; modulation = descriptor.getConstellation(); if (modulation > 2) modulation = Modulation::Auto; inversion = Inversion::Unknown; eDebug("Terr freq %d, bw %d, cr_hp %d, cr_lp %d, tm_mode %d, guard %d, hierarchy %d, const %d", frequency, bandwidth, code_rate_HP, code_rate_LP, transmission_mode, guard_interval, hierarchy, modulation); } eDVBFrontendParameters::eDVBFrontendParameters(): m_type(-1) { } DEFINE_REF(eDVBFrontendParameters); RESULT eDVBFrontendParameters::getSystem(int &t) const { if (m_type == -1) return -1; t = m_type; return 0; } RESULT eDVBFrontendParameters::getDVBS(eDVBFrontendParametersSatellite &p) const { if (m_type != iDVBFrontend::feSatellite) return -1; p = sat; return 0; } RESULT eDVBFrontendParameters::getDVBC(eDVBFrontendParametersCable &p) const { if (m_type != iDVBFrontend::feCable) return -1; p = cable; return 0; } RESULT eDVBFrontendParameters::getDVBT(eDVBFrontendParametersTerrestrial &p) const { if (m_type != iDVBFrontend::feTerrestrial) return -1; p = terrestrial; return 0; } RESULT eDVBFrontendParameters::setDVBS(const eDVBFrontendParametersSatellite &p, bool no_rotor_command_on_tune) { sat = p; sat.no_rotor_command_on_tune = no_rotor_command_on_tune; m_type = iDVBFrontend::feSatellite; return 0; } RESULT eDVBFrontendParameters::setDVBC(const eDVBFrontendParametersCable &p) { cable = p; m_type = iDVBFrontend::feCable; return 0; } RESULT eDVBFrontendParameters::setDVBT(const eDVBFrontendParametersTerrestrial &p) { terrestrial = p; m_type = iDVBFrontend::feTerrestrial; return 0; } RESULT eDVBFrontendParameters::calculateDifference(const iDVBFrontendParameters *parm, int &diff, bool exact) const { if (!parm) return -1; int type; if (parm->getSystem(type)) return -1; if (type != m_type) { diff = 1<<30; // big difference return 0; } switch (type) { case iDVBFrontend::feSatellite: { eDVBFrontendParametersSatellite osat; if (parm->getDVBS(osat)) return -2; if (sat.orbital_position != osat.orbital_position) diff = 1<<29; else if (sat.polarisation != osat.polarisation) diff = 1<<28; else if (exact && sat.fec != osat.fec && sat.fec != eDVBFrontendParametersSatellite::FEC::fAuto && osat.fec != eDVBFrontendParametersSatellite::FEC::fAuto) diff = 1<<27; else if (exact && sat.modulation != osat.modulation && sat.modulation != eDVBFrontendParametersSatellite::Modulation::Auto && osat.modulation != eDVBFrontendParametersSatellite::Modulation::Auto) diff = 1<<27; else { diff = abs(sat.frequency - osat.frequency); diff += abs(sat.symbol_rate - osat.symbol_rate); } return 0; } case iDVBFrontend::feCable: eDVBFrontendParametersCable ocable; if (parm->getDVBC(ocable)) return -2; if (exact && cable.modulation != ocable.modulation && cable.modulation != eDVBFrontendParametersCable::Modulation::Auto && ocable.modulation != eDVBFrontendParametersCable::Modulation::Auto) diff = 1 << 29; else if (exact && cable.fec_inner != ocable.fec_inner && cable.fec_inner != eDVBFrontendParametersCable::FEC::fAuto && ocable.fec_inner != eDVBFrontendParametersCable::FEC::fAuto) diff = 1 << 27; else { diff = abs(cable.frequency - ocable.frequency); diff += abs(cable.symbol_rate - ocable.symbol_rate); } return 0; case iDVBFrontend::feTerrestrial: eDVBFrontendParametersTerrestrial oterrestrial; if (parm->getDVBT(oterrestrial)) return -2; if (exact && oterrestrial.bandwidth != terrestrial.bandwidth && oterrestrial.bandwidth != eDVBFrontendParametersTerrestrial::Bandwidth::BwAuto && terrestrial.bandwidth != eDVBFrontendParametersTerrestrial::Bandwidth::BwAuto) diff = 1 << 30; else if (exact && oterrestrial.modulation != terrestrial.modulation && oterrestrial.modulation != eDVBFrontendParametersTerrestrial::Modulation::Auto && terrestrial.modulation != eDVBFrontendParametersTerrestrial::Modulation::Auto) diff = 1 << 30; else if (exact && oterrestrial.transmission_mode != terrestrial.transmission_mode && oterrestrial.transmission_mode != eDVBFrontendParametersTerrestrial::TransmissionMode::TMAuto && terrestrial.transmission_mode != eDVBFrontendParametersTerrestrial::TransmissionMode::TMAuto) diff = 1 << 30; else if (exact && oterrestrial.guard_interval != terrestrial.guard_interval && oterrestrial.guard_interval != eDVBFrontendParametersTerrestrial::GuardInterval::GI_Auto && terrestrial.guard_interval != eDVBFrontendParametersTerrestrial::GuardInterval::GI_Auto) diff = 1 << 30; else if (exact && oterrestrial.hierarchy != terrestrial.hierarchy && oterrestrial.hierarchy != eDVBFrontendParametersTerrestrial::Hierarchy::HAuto && terrestrial.hierarchy != eDVBFrontendParametersTerrestrial::Hierarchy::HAuto) diff = 1 << 30; else if (exact && oterrestrial.code_rate_LP != terrestrial.code_rate_LP && oterrestrial.code_rate_LP != eDVBFrontendParametersTerrestrial::FEC::fAuto && terrestrial.code_rate_LP != eDVBFrontendParametersTerrestrial::FEC::fAuto) diff = 1 << 30; else if (exact && oterrestrial.code_rate_HP != terrestrial.code_rate_HP && oterrestrial.code_rate_HP != eDVBFrontendParametersTerrestrial::FEC::fAuto && terrestrial.code_rate_HP != eDVBFrontendParametersTerrestrial::FEC::fAuto) diff = 1 << 30; else diff = abs(terrestrial.frequency - oterrestrial.frequency); return 0; default: return -1; } return 0; } RESULT eDVBFrontendParameters::getHash(unsigned long &hash) const { switch (m_type) { case iDVBFrontend::feSatellite: { hash = (sat.orbital_position << 16); hash |= ((sat.frequency/1000)&0xFFFF)|((sat.polarisation&1) << 15); return 0; } case iDVBFrontend::feCable: hash = 0xFFFF0000; return 0; case iDVBFrontend::feTerrestrial: hash = 0xEEEE0000; return 0; default: return -1; } } DEFINE_REF(eDVBFrontend); eDVBFrontend::eDVBFrontend(int adap, int fe, int &ok) :m_type(-1), m_fe(fe), m_fd(-1), m_sn(0), m_timeout(0), m_tuneTimer(0) #if HAVE_DVB_API_VERSION < 3 ,m_secfd(-1) #endif { #if HAVE_DVB_API_VERSION < 3 sprintf(m_filename, "/dev/dvb/card%d/frontend%d", adap, fe); sprintf(m_sec_filename, "/dev/dvb/card%d/sec%d", adap, fe); #else sprintf(m_filename, "/dev/dvb/adapter%d/frontend%d", adap, fe); #endif m_timeout = new eTimer(eApp); CONNECT(m_timeout->timeout, eDVBFrontend::timeout); m_tuneTimer = new eTimer(eApp); CONNECT(m_tuneTimer->timeout, eDVBFrontend::tuneLoop); for (int i=0; iactivated, eDVBFrontend::feEvent); return 0; } int eDVBFrontend::closeFrontend() { eDVBRegisteredFrontend *linked_fe = (eDVBRegisteredFrontend*)m_data[LINKED_NEXT_PTR]; while (linked_fe != (eDVBRegisteredFrontend*)-1) { if (linked_fe->m_inuse) { eDebug("dont close frontend %d until the linked frontend %d is still in use", m_fe, linked_fe->m_frontend->getID()); return -1; } linked_fe->m_frontend->getData(LINKED_NEXT_PTR, (int&)linked_fe); } if (m_fd >= 0) { eDebug("close frontend %d", m_fe); m_tuneTimer->stop(); setTone(iDVBFrontend::toneOff); setVoltage(iDVBFrontend::voltageOff); if (m_sec) m_sec->setRotorMoving(false); if (!::close(m_fd)) m_fd=-1; else eWarning("couldnt close frontend %d", m_fe); m_data[CSW] = m_data[UCSW] = m_data[TONEBURST] = -1; } #if HAVE_DVB_API_VERSION < 3 if (m_secfd >= 0) { if (!::close(m_secfd)) m_secfd=-1; else eWarning("couldnt close sec %d", m_fe); } #endif delete m_sn; m_sn=0; return 0; } eDVBFrontend::~eDVBFrontend() { closeFrontend(); delete m_timeout; delete m_tuneTimer; } void eDVBFrontend::feEvent(int w) { while (1) { #if HAVE_DVB_API_VERSION < 3 FrontendEvent event; #else dvb_frontend_event event; #endif int res; int state; res = ::ioctl(m_fd, FE_GET_EVENT, &event); if (res && (errno == EAGAIN)) break; if (res) { eWarning("FE_GET_EVENT failed! %m"); return; } if (w < 0) continue; #if HAVE_DVB_API_VERSION < 3 if (event.type == FE_COMPLETION_EV) #else eDebug("(%d)fe event: status %x, inversion %s", m_fe, event.status, (event.parameters.inversion == INVERSION_ON) ? "on" : "off"); if (event.status & FE_HAS_LOCK) #endif { state = stateLock; } else { if (m_tuning) state = stateTuning; else { eDebug("stateLostLock"); state = stateLostLock; m_data[CSW] = m_data[UCSW] = m_data[TONEBURST] = -1; // reset diseqc } } if (m_state != state) { m_state = state; m_stateChanged(this); } } } void eDVBFrontend::timeout() { m_tuning = 0; if (m_state == stateTuning) { m_state = stateFailed; m_stateChanged(this); } } int eDVBFrontend::readFrontendData(int type) { switch(type) { case bitErrorRate: { uint32_t ber=0; if (ioctl(m_fd, FE_READ_BER, &ber) < 0 && errno != ERANGE) eDebug("FE_READ_BER failed (%m)"); return ber; } case signalPower: { uint16_t snr=0; if (ioctl(m_fd, FE_READ_SNR, &snr) < 0 && errno != ERANGE) eDebug("FE_READ_SNR failed (%m)"); return snr; } case signalQuality: { uint16_t strength=0; if (ioctl(m_fd, FE_READ_SIGNAL_STRENGTH, &strength) < 0 && errno != ERANGE) eDebug("FE_READ_SIGNAL_STRENGTH failed (%m)"); return strength; } case locked: { #if HAVE_DVB_API_VERSION < 3 FrontendStatus status=0; #else fe_status_t status; #endif if ( ioctl(m_fd, FE_READ_STATUS, &status) < 0 && errno != ERANGE ) eDebug("FE_READ_STATUS failed (%m)"); return !!(status&FE_HAS_LOCK); } case synced: { #if HAVE_DVB_API_VERSION < 3 FrontendStatus status=0; #else fe_status_t status; #endif if ( ioctl(m_fd, FE_READ_STATUS, &status) < 0 && errno != ERANGE ) eDebug("FE_READ_STATUS failed (%m)"); return !!(status&FE_HAS_SYNC); } case frontendNumber: return m_fe; } return 0; } void PutToDict(ePyObject &dict, const char*key, long value) { ePyObject item = PyInt_FromLong(value); if (item) { if (PyDict_SetItemString(dict, key, item)) eDebug("put %s to dict failed", key); Py_DECREF(item); } else eDebug("could not create PyObject for %s", key); } void PutToDict(ePyObject &dict, const char*key, const char *value) { ePyObject item = PyString_FromString(value); if (item) { if (PyDict_SetItemString(dict, key, item)) eDebug("put %s to dict failed", key); Py_DECREF(item); } else eDebug("could not create PyObject for %s", key); } void fillDictWithSatelliteData(ePyObject dict, const FRONTENDPARAMETERS &parm, eDVBFrontend *fe) { int freq_offset=0; int csw=0; const char *tmp=0; fe->getData(eDVBFrontend::CSW, csw); fe->getData(eDVBFrontend::FREQ_OFFSET, freq_offset); int frequency = parm_frequency + freq_offset; PutToDict(dict, "frequency", frequency); PutToDict(dict, "symbol_rate", parm_u_qpsk_symbol_rate); switch(parm_u_qpsk_fec_inner) { case FEC_1_2: tmp = "FEC_1_2"; break; case FEC_2_3: tmp = "FEC_2_3"; break; case FEC_3_4: tmp = "FEC_3_4"; break; case FEC_5_6: tmp = "FEC_5_6"; break; case FEC_7_8: tmp = "FEC_7_8"; break; case FEC_NONE: tmp = "FEC_NONE"; default: case FEC_AUTO: tmp = "FEC_AUTO"; break; #if HAVE_DVB_API_VERSION >=3 case FEC_S2_8PSK_1_2: case FEC_S2_QPSK_1_2: tmp = "FEC_1_2"; break; case FEC_S2_8PSK_2_3: case FEC_S2_QPSK_2_3: tmp = "FEC_2_3"; break; case FEC_S2_8PSK_3_4: case FEC_S2_QPSK_3_4: tmp = "FEC_3_4"; break; case FEC_S2_8PSK_5_6: case FEC_S2_QPSK_5_6: tmp = "FEC_5_6"; break; case FEC_S2_8PSK_7_8: case FEC_S2_QPSK_7_8: tmp = "FEC_7_8"; break; case FEC_S2_8PSK_8_9: case FEC_S2_QPSK_8_9: tmp = "FEC_8_9"; break; case FEC_S2_8PSK_3_5: case FEC_S2_QPSK_3_5: tmp = "FEC_3_5"; break; case FEC_S2_8PSK_4_5: case FEC_S2_QPSK_4_5: tmp = "FEC_4_5"; break; case FEC_S2_8PSK_9_10: case FEC_S2_QPSK_9_10: tmp = "FEC_9_10"; break; #endif } #if HAVE_DVB_API_VERSION >=3 PutToDict(dict, "modulation", parm_u_qpsk_fec_inner > FEC_S2_QPSK_9_10 ? "8PSK": "QPSK" ); #else PutToDict(dict, "modulation", "QPSK" ); #endif PutToDict(dict, "fec_inner", tmp); tmp = parm_u_qpsk_fec_inner > FEC_AUTO ? "DVB-S2" : "DVB-S"; PutToDict(dict, "system", tmp); } void fillDictWithCableData(ePyObject dict, const FRONTENDPARAMETERS &parm) { const char *tmp=0; PutToDict(dict, "frequency", parm_frequency/1000); PutToDict(dict, "symbol_rate", parm_u_qam_symbol_rate); switch(parm_u_qam_fec_inner) { case FEC_NONE: tmp = "FEC_NONE"; break; case FEC_1_2: tmp = "FEC_1_2"; break; case FEC_2_3: tmp = "FEC_2_3"; break; case FEC_3_4: tmp = "FEC_3_4"; break; case FEC_5_6: tmp = "FEC_5_6"; break; case FEC_7_8: tmp = "FEC_7_8"; break; #if HAVE_DVB_API_VERSION >= 3 case FEC_8_9: tmp = "FEC_8_9"; break; #endif default: case FEC_AUTO: tmp = "FEC_AUTO"; break; } PutToDict(dict, "fec_inner", tmp); switch(parm_u_qam_modulation) { case QAM_16: tmp = "QAM_16"; break; case QAM_32: tmp = "QAM_32"; break; case QAM_64: tmp = "QAM_64"; break; case QAM_128: tmp = "QAM_128"; break; case QAM_256: tmp = "QAM_256"; break; default: case QAM_AUTO: tmp = "QAM_AUTO"; break; } PutToDict(dict, "modulation", tmp); } void fillDictWithTerrestrialData(ePyObject dict, const FRONTENDPARAMETERS &parm) { const char *tmp=0; PutToDict(dict, "frequency", parm_frequency); switch (parm_u_ofdm_bandwidth) { case BANDWIDTH_8_MHZ: tmp = "BANDWIDTH_8_MHZ"; break; case BANDWIDTH_7_MHZ: tmp = "BANDWIDTH_7_MHZ"; break; case BANDWIDTH_6_MHZ: tmp = "BANDWIDTH_6_MHZ"; break; default: case BANDWIDTH_AUTO: tmp = "BANDWIDTH_AUTO"; break; } PutToDict(dict, "bandwidth", tmp); switch (parm_u_ofdm_code_rate_LP) { case FEC_1_2: tmp = "FEC_1_2"; break; case FEC_2_3: tmp = "FEC_2_3"; break; case FEC_3_4: tmp = "FEC_3_4"; break; case FEC_5_6: tmp = "FEC_5_6"; break; case FEC_7_8: tmp = "FEC_7_8"; break; default: case FEC_AUTO: tmp = "FEC_AUTO"; break; } PutToDict(dict, "code_rate_lp", tmp); switch (parm_u_ofdm_code_rate_HP) { case FEC_1_2: tmp = "FEC_1_2"; break; case FEC_2_3: tmp = "FEC_2_3"; break; case FEC_3_4: tmp = "FEC_3_4"; break; case FEC_5_6: tmp = "FEC_5_6"; break; case FEC_7_8: tmp = "FEC_7_8"; break; default: case FEC_AUTO: tmp = "FEC_AUTO"; break; } PutToDict(dict, "code_rate_hp", tmp); switch (parm_u_ofdm_constellation) { case QPSK: tmp = "QPSK"; break; case QAM_16: tmp = "QAM_16"; break; case QAM_64: tmp = "QAM_64"; break; default: case QAM_AUTO: tmp = "QAM_AUTO"; break; } PutToDict(dict, "constellation", tmp); switch (parm_u_ofdm_transmission_mode) { case TRANSMISSION_MODE_2K: tmp = "TRANSMISSION_MODE_2K"; break; case TRANSMISSION_MODE_8K: tmp = "TRANSMISSION_MODE_8K"; break; default: case TRANSMISSION_MODE_AUTO: tmp = "TRANSMISSION_MODE_AUTO"; break; } PutToDict(dict, "transmission_mode", tmp); switch (parm_u_ofdm_guard_interval) { case GUARD_INTERVAL_1_32: tmp = "GUARD_INTERVAL_1_32"; break; case GUARD_INTERVAL_1_16: tmp = "GUARD_INTERVAL_1_16"; break; case GUARD_INTERVAL_1_8: tmp = "GUARD_INTERVAL_1_8"; break; case GUARD_INTERVAL_1_4: tmp = "GUARD_INTERVAL_1_4"; break; default: case GUARD_INTERVAL_AUTO: tmp = "GUARD_INTERVAL_AUTO"; break; } PutToDict(dict, "guard_interval", tmp); switch (parm_u_ofdm_hierarchy_information) { case HIERARCHY_NONE: tmp = "HIERARCHY_NONE"; break; case HIERARCHY_1: tmp = "HIERARCHY_1"; break; case HIERARCHY_2: tmp = "HIERARCHY_2"; break; case HIERARCHY_4: tmp = "HIERARCHY_4"; break; default: case HIERARCHY_AUTO: tmp = "HIERARCHY_AUTO"; break; } PutToDict(dict, "hierarchy_information", tmp); } PyObject *eDVBFrontend::readTransponderData(bool original) { ePyObject ret=PyDict_New(); if (ret) { bool read=m_fd != -1; const char *tmp=0; PutToDict(ret, "tuner_number", m_fe); switch(m_type) { case feSatellite: tmp = "DVB-S"; break; case feCable: tmp = "DVB-C"; break; case feTerrestrial: tmp = "DVB-T"; break; default: tmp = "UNKNOWN"; read=false; break; } PutToDict(ret, "tuner_type", tmp); if (read) { FRONTENDPARAMETERS front; tmp = "UNKNOWN"; switch(m_state) { case stateIdle: tmp="IDLE"; break; case stateTuning: tmp="TUNING"; break; case stateFailed: tmp="FAILED"; break; case stateLock: tmp="LOCKED"; break; case stateLostLock: tmp="LOSTLOCK"; break; default: break; } PutToDict(ret, "tuner_state", tmp); PutToDict(ret, "tuner_locked", readFrontendData(locked)); PutToDict(ret, "tuner_synced", readFrontendData(synced)); PutToDict(ret, "tuner_bit_error_rate", readFrontendData(bitErrorRate)); PutToDict(ret, "tuner_signal_power", readFrontendData(signalPower)); PutToDict(ret, "tuner_signal_quality", readFrontendData(signalQuality)); if (!original && ioctl(m_fd, FE_GET_FRONTEND, &front)<0) eDebug("FE_GET_FRONTEND (%m)"); else { const FRONTENDPARAMETERS &parm = original ? this->parm : front; tmp = "INVERSION_AUTO"; switch(parm_inversion) { case INVERSION_ON: tmp = "INVERSION_ON"; break; case INVERSION_OFF: tmp = "INVERSION_OFF"; break; default: break; } if (tmp) PutToDict(ret, "inversion", tmp); switch(m_type) { case feSatellite: fillDictWithSatelliteData(ret, original?parm:front, this); break; case feCable: fillDictWithCableData(ret, original?parm:front); break; case feTerrestrial: fillDictWithTerrestrialData(ret, original?parm:front); break; } } } } else { Py_INCREF(Py_None); ret = Py_None; } return ret; } #ifndef FP_IOCTL_GET_ID #define FP_IOCTL_GET_ID 0 #endif int eDVBFrontend::readInputpower() { int power=m_fe; // this is needed for read inputpower from the correct tuner ! // open front prozessor int fp=::open("/dev/dbox/fp0", O_RDWR); if (fp < 0) { eDebug("couldn't open fp"); return -1; } static bool old_fp = (::ioctl(fp, FP_IOCTL_GET_ID) < 0); if ( ioctl( fp, old_fp ? 9 : 0x100, &power ) < 0 ) { eDebug("FP_IOCTL_GET_LNB_CURRENT failed (%m)"); return -1; } ::close(fp); return power; } bool eDVBFrontend::setSecSequencePos(int steps) { eDebug("set sequence pos %d", steps); if (!steps) return false; while( steps > 0 ) { if (m_sec_sequence.current() != m_sec_sequence.end()) ++m_sec_sequence.current(); --steps; } while( steps < 0 ) { if (m_sec_sequence.current() != m_sec_sequence.begin() && m_sec_sequence.current() != m_sec_sequence.end()) --m_sec_sequence.current(); ++steps; } return true; } void eDVBFrontend::tuneLoop() // called by m_tuneTimer { int delay=0; if ( m_sec_sequence && m_sec_sequence.current() != m_sec_sequence.end() ) { // eDebug("tuneLoop %d\n", m_sec_sequence.current()->cmd); switch (m_sec_sequence.current()->cmd) { case eSecCommand::SLEEP: delay = m_sec_sequence.current()++->msec; eDebug("[SEC] sleep %dms", delay); break; case eSecCommand::GOTO: if ( !setSecSequencePos(m_sec_sequence.current()->steps) ) ++m_sec_sequence.current(); break; case eSecCommand::SET_VOLTAGE: { int voltage = m_sec_sequence.current()++->voltage; eDebug("[SEC] setVoltage %d", voltage); setVoltage(voltage); break; } case eSecCommand::IF_VOLTAGE_GOTO: { eSecCommand::pair &compare = m_sec_sequence.current()->compare; if ( compare.voltage == m_curVoltage && setSecSequencePos(compare.steps) ) break; ++m_sec_sequence.current(); break; } case eSecCommand::IF_NOT_VOLTAGE_GOTO: { eSecCommand::pair &compare = m_sec_sequence.current()->compare; if ( compare.voltage != m_curVoltage && setSecSequencePos(compare.steps) ) break; ++m_sec_sequence.current(); break; } case eSecCommand::SET_TONE: eDebug("[SEC] setTone %d", m_sec_sequence.current()->tone); setTone(m_sec_sequence.current()++->tone); break; case eSecCommand::SEND_DISEQC: sendDiseqc(m_sec_sequence.current()->diseqc); eDebugNoNewLine("[SEC] sendDiseqc: "); for (int i=0; i < m_sec_sequence.current()->diseqc.len; ++i) eDebugNoNewLine("%02x", m_sec_sequence.current()->diseqc.data[i]); eDebug(""); ++m_sec_sequence.current(); break; case eSecCommand::SEND_TONEBURST: eDebug("[SEC] sendToneburst: %d", m_sec_sequence.current()->toneburst); sendToneburst(m_sec_sequence.current()++->toneburst); break; case eSecCommand::SET_FRONTEND: eDebug("[SEC] setFrontend"); setFrontend(); ++m_sec_sequence.current(); break; case eSecCommand::START_TUNE_TIMEOUT: m_timeout->start(5000, 1); // 5 sec timeout. TODO: symbolrate dependent ++m_sec_sequence.current(); break; case eSecCommand::SET_TIMEOUT: m_timeoutCount = m_sec_sequence.current()++->val; eDebug("[SEC] set timeout %d", m_timeoutCount); break; case eSecCommand::IF_TIMEOUT_GOTO: if (!m_timeoutCount) { eDebug("[SEC] rotor timout"); m_sec->setRotorMoving(false); setSecSequencePos(m_sec_sequence.current()->steps); } else ++m_sec_sequence.current(); break; case eSecCommand::MEASURE_IDLE_INPUTPOWER: { int idx = m_sec_sequence.current()++->val; if ( idx == 0 || idx == 1 ) { m_idleInputpower[idx] = readInputpower(); eDebug("[SEC] idleInputpower[%d] is %d", idx, m_idleInputpower[idx]); } else eDebug("[SEC] idleInputpower measure index(%d) out of bound !!!", idx); break; } case eSecCommand::IF_MEASURE_IDLE_WAS_NOT_OK_GOTO: { eSecCommand::pair &compare = m_sec_sequence.current()->compare; int idx = compare.voltage; if ( idx == 0 || idx == 1 ) { int idle = readInputpower(); int diff = abs(idle-m_idleInputpower[idx]); if ( diff > 0) { eDebug("measure idle(%d) was not okay.. (%d - %d = %d) retry", idx, m_idleInputpower[idx], idle, diff); setSecSequencePos(compare.steps); break; } } ++m_sec_sequence.current(); break; } case eSecCommand::IF_TUNER_LOCKED_GOTO: { eSecCommand::rotor &cmd = m_sec_sequence.current()->measure; if (readFrontendData(locked)) { eDebug("[SEC] locked step %d ok", cmd.okcount); ++cmd.okcount; if (cmd.okcount > 12) { eDebug("ok > 12 .. goto %d\n",m_sec_sequence.current()->steps); setSecSequencePos(cmd.steps); break; } } else { eDebug("[SEC] rotor locked step %d failed", cmd.okcount); --m_timeoutCount; if (!m_timeoutCount && m_retryCount > 0) --m_retryCount; cmd.okcount=0; } ++m_sec_sequence.current(); break; } case eSecCommand::MEASURE_RUNNING_INPUTPOWER: m_runningInputpower = readInputpower(); eDebug("[SEC] runningInputpower is %d", m_runningInputpower); ++m_sec_sequence.current(); break; case eSecCommand::IF_INPUTPOWER_DELTA_GOTO: { int idleInputpower = m_idleInputpower[ (m_curVoltage&1) ? 0 : 1]; eSecCommand::rotor &cmd = m_sec_sequence.current()->measure; const char *txt = cmd.direction ? "running" : "stopped"; eDebug("[SEC] waiting for rotor %s %d, idle %d, delta %d", txt, m_runningInputpower, idleInputpower, cmd.deltaA); if ( (cmd.direction && abs(m_runningInputpower - idleInputpower) >= cmd.deltaA) || (!cmd.direction && abs(m_runningInputpower - idleInputpower) <= cmd.deltaA) ) { ++cmd.okcount; eDebug("[SEC] rotor %s step %d ok", txt, cmd.okcount); if ( cmd.okcount > 6 ) { m_sec->setRotorMoving(cmd.direction); eDebug("[SEC] rotor is %s", txt); if (setSecSequencePos(cmd.steps)) break; } } else { eDebug("[SEC] rotor not %s... reset counter.. increase timeout", txt); --m_timeoutCount; if (!m_timeoutCount && m_retryCount > 0) --m_retryCount; cmd.okcount=0; } ++m_sec_sequence.current(); break; } case eSecCommand::IF_ROTORPOS_VALID_GOTO: if (m_data[ROTOR_CMD] != -1 && m_data[ROTOR_POS] != -1) setSecSequencePos(m_sec_sequence.current()->steps); else ++m_sec_sequence.current(); break; case eSecCommand::INVALIDATE_CURRENT_ROTORPARMS: m_data[ROTOR_CMD] = m_data[ROTOR_POS] = -1; eDebug("[SEC] invalidate current rotorparams"); ++m_sec_sequence.current(); break; case eSecCommand::UPDATE_CURRENT_ROTORPARAMS: m_data[ROTOR_CMD] = m_data[NEW_ROTOR_CMD]; m_data[ROTOR_POS] = m_data[NEW_ROTOR_POS]; eDebug("[SEC] update current rotorparams %d %04x %d", m_timeoutCount, m_data[5], m_data[6]); ++m_sec_sequence.current(); break; case eSecCommand::SET_ROTOR_DISEQC_RETRYS: m_retryCount = m_sec_sequence.current()++->val; eDebug("[SEC] set rotor retries %d", m_retryCount); break; case eSecCommand::IF_NO_MORE_ROTOR_DISEQC_RETRYS_GOTO: if (!m_retryCount) { eDebug("[SEC] no more rotor retrys"); setSecSequencePos(m_sec_sequence.current()->steps); } else ++m_sec_sequence.current(); break; case eSecCommand::SET_POWER_LIMITING_MODE: { int fd = m_fe ? ::open("/dev/i2c/1", O_RDWR) : ::open("/dev/i2c/0", O_RDWR); unsigned char data[2]; ::ioctl(fd, I2C_SLAVE_FORCE, 0x10 >> 1); if(::read(fd, data, 1) != 1) eDebug("[SEC] error read lnbp (%m)"); if ( m_sec_sequence.current()->mode == eSecCommand::modeStatic ) { data[0] |= 0x80; // enable static current limiting eDebug("[SEC] set static current limiting"); } else { data[0] &= ~0x80; // enable dynamic current limiting eDebug("[SEC] set dynamic current limiting"); } if(::write(fd, data, 1) != 1) eDebug("[SEC] error write lnbp (%m)"); ::close(fd); ++m_sec_sequence.current(); break; } default: eDebug("[SEC] unhandled sec command %d", ++m_sec_sequence.current()->cmd); ++m_sec_sequence.current(); } m_tuneTimer->start(delay,true); } } void eDVBFrontend::setFrontend() { eDebug("setting frontend %d", m_fe); m_sn->start(); feEvent(-1); if (ioctl(m_fd, FE_SET_FRONTEND, &parm) == -1) { perror("FE_SET_FRONTEND failed"); return; } } RESULT eDVBFrontend::getFrontendType(int &t) { if (m_type == -1) return -ENODEV; t = m_type; return 0; } RESULT eDVBFrontend::prepare_sat(const eDVBFrontendParametersSatellite &feparm) { int res; if (!m_sec) { eWarning("no SEC module active!"); return -ENOENT; } res = m_sec->prepare(*this, parm, feparm, 1 << m_fe); if (!res) { eDebug("prepare_sat System %d Freq %d Pol %d SR %d INV %d FEC %d orbpos %d", feparm.system, feparm.frequency, feparm.polarisation, feparm.symbol_rate, feparm.inversion, feparm.fec, feparm.orbital_position); parm_u_qpsk_symbol_rate = feparm.symbol_rate; switch (feparm.inversion) { case eDVBFrontendParametersSatellite::Inversion::On: parm_inversion = INVERSION_ON; break; case eDVBFrontendParametersSatellite::Inversion::Off: parm_inversion = INVERSION_OFF; break; default: case eDVBFrontendParametersSatellite::Inversion::Unknown: parm_inversion = INVERSION_AUTO; break; } if (feparm.system == eDVBFrontendParametersSatellite::System::DVB_S) switch (feparm.fec) { case eDVBFrontendParametersSatellite::FEC::fNone: parm_u_qpsk_fec_inner = FEC_NONE; break; case eDVBFrontendParametersSatellite::FEC::f1_2: parm_u_qpsk_fec_inner = FEC_1_2; break; case eDVBFrontendParametersSatellite::FEC::f2_3: parm_u_qpsk_fec_inner = FEC_2_3; break; case eDVBFrontendParametersSatellite::FEC::f3_4: parm_u_qpsk_fec_inner = FEC_3_4; break; case eDVBFrontendParametersSatellite::FEC::f5_6: parm_u_qpsk_fec_inner = FEC_5_6; break; case eDVBFrontendParametersSatellite::FEC::f7_8: parm_u_qpsk_fec_inner = FEC_7_8; break; default: eDebug("no valid fec for DVB-S set.. assume auto"); case eDVBFrontendParametersSatellite::FEC::fAuto: parm_u_qpsk_fec_inner = FEC_AUTO; break; } #if HAVE_DVB_API_VERSION >= 3 else // DVB_S2 { switch (feparm.fec) { case eDVBFrontendParametersSatellite::FEC::f1_2: parm_u_qpsk_fec_inner = FEC_S2_QPSK_1_2; break; case eDVBFrontendParametersSatellite::FEC::f2_3: parm_u_qpsk_fec_inner = FEC_S2_QPSK_2_3; break; case eDVBFrontendParametersSatellite::FEC::f3_4: parm_u_qpsk_fec_inner = FEC_S2_QPSK_3_4; break; case eDVBFrontendParametersSatellite::FEC::f3_5: parm_u_qpsk_fec_inner = FEC_S2_QPSK_3_5; break; case eDVBFrontendParametersSatellite::FEC::f4_5: parm_u_qpsk_fec_inner = FEC_S2_QPSK_4_5; break; case eDVBFrontendParametersSatellite::FEC::f5_6: parm_u_qpsk_fec_inner = FEC_S2_QPSK_5_6; break; case eDVBFrontendParametersSatellite::FEC::f7_8: parm_u_qpsk_fec_inner = FEC_S2_QPSK_7_8; break; case eDVBFrontendParametersSatellite::FEC::f8_9: parm_u_qpsk_fec_inner = FEC_S2_QPSK_8_9; break; case eDVBFrontendParametersSatellite::FEC::f9_10: parm_u_qpsk_fec_inner = FEC_S2_QPSK_9_10; break; default: eDebug("no valid fec for DVB-S2 set.. abort !!"); return -EINVAL; } if (feparm.modulation == eDVBFrontendParametersSatellite::Modulation::M8PSK) parm_u_qpsk_fec_inner = (fe_code_rate_t)((int)parm_u_qpsk_fec_inner+9); // 8PSK fec driver values are decimal 9 bigger } #endif // FIXME !!! get frequency range from tuner if ( parm_frequency < 900000 || parm_frequency > 2200000 ) { eDebug("%d mhz out of tuner range.. dont tune", parm_frequency/1000); return -EINVAL; } eDebug("tuning to %d mhz", parm_frequency/1000); } return res; } RESULT eDVBFrontend::prepare_cable(const eDVBFrontendParametersCable &feparm) { parm_frequency = feparm.frequency * 1000; parm_u_qam_symbol_rate = feparm.symbol_rate; switch (feparm.modulation) { case eDVBFrontendParametersCable::Modulation::QAM16: parm_u_qam_modulation = QAM_16; break; case eDVBFrontendParametersCable::Modulation::QAM32: parm_u_qam_modulation = QAM_32; break; case eDVBFrontendParametersCable::Modulation::QAM64: parm_u_qam_modulation = QAM_64; break; case eDVBFrontendParametersCable::Modulation::QAM128: parm_u_qam_modulation = QAM_128; break; case eDVBFrontendParametersCable::Modulation::QAM256: parm_u_qam_modulation = QAM_256; break; default: case eDVBFrontendParametersCable::Modulation::Auto: parm_u_qam_modulation = QAM_AUTO; break; } switch (feparm.inversion) { case eDVBFrontendParametersCable::Inversion::On: parm_inversion = INVERSION_ON; break; case eDVBFrontendParametersCable::Inversion::Off: parm_inversion = INVERSION_OFF; break; default: case eDVBFrontendParametersCable::Inversion::Unknown: parm_inversion = INVERSION_AUTO; break; } switch (feparm.fec_inner) { case eDVBFrontendParametersCable::FEC::fNone: parm_u_qam_fec_inner = FEC_NONE; break; case eDVBFrontendParametersCable::FEC::f1_2: parm_u_qam_fec_inner = FEC_1_2; break; case eDVBFrontendParametersCable::FEC::f2_3: parm_u_qam_fec_inner = FEC_2_3; break; case eDVBFrontendParametersCable::FEC::f3_4: parm_u_qam_fec_inner = FEC_3_4; break; case eDVBFrontendParametersCable::FEC::f5_6: parm_u_qam_fec_inner = FEC_5_6; break; case eDVBFrontendParametersCable::FEC::f7_8: parm_u_qam_fec_inner = FEC_7_8; break; #if HAVE_DVB_API_VERSION >= 3 case eDVBFrontendParametersCable::FEC::f8_9: parm_u_qam_fec_inner = FEC_8_9; break; #endif default: case eDVBFrontendParametersCable::FEC::fAuto: parm_u_qam_fec_inner = FEC_AUTO; break; } eDebug("tuning to %d khz, sr %d, fec %d, modulation %d, inversion %d", parm_frequency/1000, parm_u_qam_symbol_rate, parm_u_qam_fec_inner, parm_u_qam_modulation, parm_inversion); return 0; } RESULT eDVBFrontend::prepare_terrestrial(const eDVBFrontendParametersTerrestrial &feparm) { parm_frequency = feparm.frequency; switch (feparm.bandwidth) { case eDVBFrontendParametersTerrestrial::Bandwidth::Bw8MHz: parm_u_ofdm_bandwidth = BANDWIDTH_8_MHZ; break; case eDVBFrontendParametersTerrestrial::Bandwidth::Bw7MHz: parm_u_ofdm_bandwidth = BANDWIDTH_7_MHZ; break; case eDVBFrontendParametersTerrestrial::Bandwidth::Bw6MHz: parm_u_ofdm_bandwidth = BANDWIDTH_6_MHZ; break; default: case eDVBFrontendParametersTerrestrial::Bandwidth::BwAuto: parm_u_ofdm_bandwidth = BANDWIDTH_AUTO; break; } switch (feparm.code_rate_LP) { case eDVBFrontendParametersTerrestrial::FEC::f1_2: parm_u_ofdm_code_rate_LP = FEC_1_2; break; case eDVBFrontendParametersTerrestrial::FEC::f2_3: parm_u_ofdm_code_rate_LP = FEC_2_3; break; case eDVBFrontendParametersTerrestrial::FEC::f3_4: parm_u_ofdm_code_rate_LP = FEC_3_4; break; case eDVBFrontendParametersTerrestrial::FEC::f5_6: parm_u_ofdm_code_rate_LP = FEC_5_6; break; case eDVBFrontendParametersTerrestrial::FEC::f7_8: parm_u_ofdm_code_rate_LP = FEC_7_8; break; default: case eDVBFrontendParametersTerrestrial::FEC::fAuto: parm_u_ofdm_code_rate_LP = FEC_AUTO; break; } switch (feparm.code_rate_HP) { case eDVBFrontendParametersTerrestrial::FEC::f1_2: parm_u_ofdm_code_rate_HP = FEC_1_2; break; case eDVBFrontendParametersTerrestrial::FEC::f2_3: parm_u_ofdm_code_rate_HP = FEC_2_3; break; case eDVBFrontendParametersTerrestrial::FEC::f3_4: parm_u_ofdm_code_rate_HP = FEC_3_4; break; case eDVBFrontendParametersTerrestrial::FEC::f5_6: parm_u_ofdm_code_rate_HP = FEC_5_6; break; case eDVBFrontendParametersTerrestrial::FEC::f7_8: parm_u_ofdm_code_rate_HP = FEC_7_8; break; default: case eDVBFrontendParametersTerrestrial::FEC::fAuto: parm_u_ofdm_code_rate_HP = FEC_AUTO; break; } switch (feparm.modulation) { case eDVBFrontendParametersTerrestrial::Modulation::QPSK: parm_u_ofdm_constellation = QPSK; break; case eDVBFrontendParametersTerrestrial::Modulation::QAM16: parm_u_ofdm_constellation = QAM_16; break; case eDVBFrontendParametersTerrestrial::Modulation::QAM64: parm_u_ofdm_constellation = QAM_64; break; default: case eDVBFrontendParametersTerrestrial::Modulation::Auto: parm_u_ofdm_constellation = QAM_AUTO; break; } switch (feparm.transmission_mode) { case eDVBFrontendParametersTerrestrial::TransmissionMode::TM2k: parm_u_ofdm_transmission_mode = TRANSMISSION_MODE_2K; break; case eDVBFrontendParametersTerrestrial::TransmissionMode::TM8k: parm_u_ofdm_transmission_mode = TRANSMISSION_MODE_8K; break; default: case eDVBFrontendParametersTerrestrial::TransmissionMode::TMAuto: parm_u_ofdm_transmission_mode = TRANSMISSION_MODE_AUTO; break; } switch (feparm.guard_interval) { case eDVBFrontendParametersTerrestrial::GuardInterval::GI_1_32: parm_u_ofdm_guard_interval = GUARD_INTERVAL_1_32; break; case eDVBFrontendParametersTerrestrial::GuardInterval::GI_1_16: parm_u_ofdm_guard_interval = GUARD_INTERVAL_1_16; break; case eDVBFrontendParametersTerrestrial::GuardInterval::GI_1_8: parm_u_ofdm_guard_interval = GUARD_INTERVAL_1_8; break; case eDVBFrontendParametersTerrestrial::GuardInterval::GI_1_4: parm_u_ofdm_guard_interval = GUARD_INTERVAL_1_4; break; default: case eDVBFrontendParametersTerrestrial::GuardInterval::GI_Auto: parm_u_ofdm_guard_interval = GUARD_INTERVAL_AUTO; break; } switch (feparm.hierarchy) { case eDVBFrontendParametersTerrestrial::Hierarchy::HNone: parm_u_ofdm_hierarchy_information = HIERARCHY_NONE; break; case eDVBFrontendParametersTerrestrial::Hierarchy::H1: parm_u_ofdm_hierarchy_information = HIERARCHY_1; break; case eDVBFrontendParametersTerrestrial::Hierarchy::H2: parm_u_ofdm_hierarchy_information = HIERARCHY_2; break; case eDVBFrontendParametersTerrestrial::Hierarchy::H4: parm_u_ofdm_hierarchy_information = HIERARCHY_4; break; default: case eDVBFrontendParametersTerrestrial::Hierarchy::HAuto: parm_u_ofdm_hierarchy_information = HIERARCHY_AUTO; break; } switch (feparm.inversion) { case eDVBFrontendParametersTerrestrial::Inversion::On: parm_inversion = INVERSION_ON; break; case eDVBFrontendParametersTerrestrial::Inversion::Off: parm_inversion = INVERSION_OFF; break; default: case eDVBFrontendParametersTerrestrial::Inversion::Unknown: parm_inversion = INVERSION_AUTO; break; } return 0; } RESULT eDVBFrontend::tune(const iDVBFrontendParameters &where) { eDebug("(%d)tune", m_fe); m_timeout->stop(); int res=0; if (!m_sn) { eDebug("no frontend device opened... do not try to tune !!!"); res = -ENODEV; goto tune_error; } if (m_type == -1) { res = -ENODEV; goto tune_error; } m_sn->stop(); m_sec_sequence.clear(); switch (m_type) { case feSatellite: { eDVBFrontendParametersSatellite feparm; if (where.getDVBS(feparm)) { eDebug("no dvbs data!"); res = -EINVAL; goto tune_error; } m_sec->setRotorMoving(false); res=prepare_sat(feparm); if (res) goto tune_error; break; } case feCable: { eDVBFrontendParametersCable feparm; if (where.getDVBC(feparm)) { res = -EINVAL; goto tune_error; } res=prepare_cable(feparm); if (res) goto tune_error; m_sec_sequence.push_back( eSecCommand(eSecCommand::START_TUNE_TIMEOUT) ); m_sec_sequence.push_back( eSecCommand(eSecCommand::SET_FRONTEND) ); break; } case feTerrestrial: { eDVBFrontendParametersTerrestrial feparm; if (where.getDVBT(feparm)) { eDebug("no -T data"); res = -EINVAL; goto tune_error; } res=prepare_terrestrial(feparm); if (res) goto tune_error; std::string enable_5V; char configStr[255]; snprintf(configStr, 255, "config.Nims.%d.terrestrial_5V", m_fe); m_sec_sequence.push_back( eSecCommand(eSecCommand::START_TUNE_TIMEOUT) ); ePythonConfigQuery::getConfigValue(configStr, enable_5V); if (enable_5V == "True") m_sec_sequence.push_back( eSecCommand(eSecCommand::SET_VOLTAGE, iDVBFrontend::voltage13) ); else m_sec_sequence.push_back( eSecCommand(eSecCommand::SET_VOLTAGE, iDVBFrontend::voltageOff) ); m_sec_sequence.push_back( eSecCommand(eSecCommand::SET_FRONTEND) ); break; } } m_tuneTimer->start(0,true); m_sec_sequence.current() = m_sec_sequence.begin(); if (m_state != stateTuning) { m_tuning = 1; m_state = stateTuning; m_stateChanged(this); } return res; tune_error: m_tuneTimer->stop(); return res; } RESULT eDVBFrontend::connectStateChange(const Slot1 &stateChange, ePtr &connection) { connection = new eConnection(this, m_stateChanged.connect(stateChange)); return 0; } RESULT eDVBFrontend::setVoltage(int voltage) { if (m_type == feCable) return -1; #if HAVE_DVB_API_VERSION < 3 secVoltage vlt; #else bool increased=false; fe_sec_voltage_t vlt; #endif m_curVoltage=voltage; switch (voltage) { case voltageOff: for (int i=0; i < 3; ++i) // reset diseqc m_data[i]=-1; vlt = SEC_VOLTAGE_OFF; break; case voltage13_5: #if HAVE_DVB_API_VERSION < 3 vlt = SEC_VOLTAGE_13_5; break; #else increased = true; #endif case voltage13: vlt = SEC_VOLTAGE_13; break; case voltage18_5: #if HAVE_DVB_API_VERSION < 3 vlt = SEC_VOLTAGE_18_5; break; #else increased = true; #endif case voltage18: vlt = SEC_VOLTAGE_18; break; default: return -ENODEV; } #if HAVE_DVB_API_VERSION < 3 return ::ioctl(m_secfd, SEC_SET_VOLTAGE, vlt); #else if (m_type == feSatellite && ::ioctl(m_fd, FE_ENABLE_HIGH_LNB_VOLTAGE, increased) < 0) perror("FE_ENABLE_HIGH_LNB_VOLTAGE"); return ::ioctl(m_fd, FE_SET_VOLTAGE, vlt); #endif } RESULT eDVBFrontend::getState(int &state) { state = m_state; return 0; } RESULT eDVBFrontend::setTone(int t) { if (m_type != feSatellite) return -1; #if HAVE_DVB_API_VERSION < 3 secToneMode_t tone; #else fe_sec_tone_mode_t tone; #endif switch (t) { case toneOn: tone = SEC_TONE_ON; break; case toneOff: tone = SEC_TONE_OFF; break; default: return -ENODEV; } #if HAVE_DVB_API_VERSION < 3 return ::ioctl(m_secfd, SEC_SET_TONE, tone); #else return ::ioctl(m_fd, FE_SET_TONE, tone); #endif } #if HAVE_DVB_API_VERSION < 3 && !defined(SEC_DISEQC_SEND_MASTER_CMD) #define SEC_DISEQC_SEND_MASTER_CMD _IOW('o', 97, struct secCommand *) #endif RESULT eDVBFrontend::sendDiseqc(const eDVBDiseqcCommand &diseqc) { #if HAVE_DVB_API_VERSION < 3 struct secCommand cmd; cmd.type = SEC_CMDTYPE_DISEQC_RAW; cmd.u.diseqc.cmdtype = diseqc.data[0]; cmd.u.diseqc.addr = diseqc.data[1]; cmd.u.diseqc.cmd = diseqc.data[2]; cmd.u.diseqc.numParams = diseqc.len-3; memcpy(cmd.u.diseqc.params, diseqc.data+3, diseqc.len-3); if (::ioctl(m_secfd, SEC_DISEQC_SEND_MASTER_CMD, &cmd)) #else struct dvb_diseqc_master_cmd cmd; memcpy(cmd.msg, diseqc.data, diseqc.len); cmd.msg_len = diseqc.len; if (::ioctl(m_fd, FE_DISEQC_SEND_MASTER_CMD, &cmd)) #endif return -EINVAL; return 0; } #if HAVE_DVB_API_VERSION < 3 && !defined(SEC_DISEQC_SEND_BURST) #define SEC_DISEQC_SEND_BURST _IO('o', 96) #endif RESULT eDVBFrontend::sendToneburst(int burst) { #if HAVE_DVB_API_VERSION < 3 secMiniCmd cmd = SEC_MINI_NONE; #else fe_sec_mini_cmd_t cmd = SEC_MINI_A; #endif if ( burst == eDVBSatelliteDiseqcParameters::A ) cmd = SEC_MINI_A; else if ( burst == eDVBSatelliteDiseqcParameters::B ) cmd = SEC_MINI_B; #if HAVE_DVB_API_VERSION < 3 if (::ioctl(m_secfd, SEC_DISEQC_SEND_BURST, cmd)) return -EINVAL; #else if (::ioctl(m_fd, FE_DISEQC_SEND_BURST, cmd)) return -EINVAL; #endif return 0; } RESULT eDVBFrontend::setSEC(iDVBSatelliteEquipmentControl *sec) { m_sec = sec; return 0; } RESULT eDVBFrontend::setSecSequence(const eSecCommandList &list) { m_sec_sequence = list; return 0; } RESULT eDVBFrontend::getData(int num, int &data) { if ( num < NUM_DATA_ENTRIES ) { data = m_data[num]; return 0; } return -EINVAL; } RESULT eDVBFrontend::setData(int num, int val) { if ( num < NUM_DATA_ENTRIES ) { m_data[num] = val; return 0; } return -EINVAL; } int eDVBFrontend::isCompatibleWith(ePtr &feparm) { int type; if (feparm->getSystem(type) || type != m_type) return 0; if (m_type == eDVBFrontend::feSatellite) { ASSERT(m_sec); eDVBFrontendParametersSatellite sat_parm; ASSERT(!feparm->getDVBS(sat_parm)); return m_sec->canTune(sat_parm, this, 1 << m_fe); } return 1; }