#include #include #include #if HAVE_DVB_API_VERSION < 3 #define INVERSION Inversion #define FREQUENCY Frequency #define FEC_INNER FEC_inner #define SYMBOLRATE SymbolRate #else #define INVERSION inversion #define FREQUENCY frequency #define FEC_INNER fec_inner #define SYMBOLRATE symbol_rate #endif #include DEFINE_REF(eDVBSatelliteEquipmentControl); eDVBSatelliteEquipmentControl *eDVBSatelliteEquipmentControl::instance; eDVBSatelliteEquipmentControl::eDVBSatelliteEquipmentControl(eSmartPtrList &avail_frontends) :m_lnbidx(-1), m_curSat(m_lnbs[0].m_satellites.end()), m_avail_frontends(avail_frontends), m_rotorMoving(false) { if (!instance) instance = this; clear(); // ASTRA addLNB(); setLNBTunerMask(3); setLNBLOFL(9750000); setLNBThreshold(11750000); setLNBLOFH(10607000); setDiSEqCMode(eDVBSatelliteDiseqcParameters::V1_0); setToneburst(eDVBSatelliteDiseqcParameters::NO); setRepeats(0); setCommittedCommand(eDVBSatelliteDiseqcParameters::BB); setCommandOrder(0); // committed, toneburst setFastDiSEqC(true); setSeqRepeat(false); addSatellite(192); setVoltageMode(eDVBSatelliteSwitchParameters::HV); setToneMode(eDVBSatelliteSwitchParameters::HILO); // Hotbird addLNB(); setLNBTunerMask(3); setLNBLOFL(9750000); setLNBThreshold(11750000); setLNBLOFH(10600000); setDiSEqCMode(eDVBSatelliteDiseqcParameters::V1_0); setToneburst(eDVBSatelliteDiseqcParameters::NO); setRepeats(0); setCommittedCommand(eDVBSatelliteDiseqcParameters::AB); setCommandOrder(0); // committed, toneburst setFastDiSEqC(true); setSeqRepeat(false); addSatellite(130); setVoltageMode(eDVBSatelliteSwitchParameters::HV); setToneMode(eDVBSatelliteSwitchParameters::HILO); // Rotor addLNB(); setLNBTunerMask(3); setLNBLOFL(9750000); setLNBThreshold(11750000); setLNBLOFH(10600000); setDiSEqCMode(eDVBSatelliteDiseqcParameters::V1_2); setToneburst(eDVBSatelliteDiseqcParameters::NO); setRepeats(0); setCommittedCommand(eDVBSatelliteDiseqcParameters::AA); setCommandOrder(0); // committed, toneburst setFastDiSEqC(true); setSeqRepeat(false); setLaDirection(eDVBSatelliteRotorParameters::NORTH); setLoDirection(eDVBSatelliteRotorParameters::EAST); setLatitude(51.017); setLongitude(8.683); setUseInputpower(true); setInputpowerDelta(50); addSatellite(235); setVoltageMode(eDVBSatelliteSwitchParameters::HV); setToneMode(eDVBSatelliteSwitchParameters::HILO); setRotorPosNum(0); addSatellite(284); setVoltageMode(eDVBSatelliteSwitchParameters::HV); setToneMode(eDVBSatelliteSwitchParameters::HILO); setRotorPosNum(0); addSatellite(420); setVoltageMode(eDVBSatelliteSwitchParameters::HV); setToneMode(eDVBSatelliteSwitchParameters::HILO); setRotorPosNum(1); // stored pos 1 } int eDVBSatelliteEquipmentControl::canTune(const eDVBFrontendParametersSatellite &sat, iDVBFrontend *fe, int frontend_id ) { int ret=0; for (int idx=0; idx <= m_lnbidx; ++idx ) { eDVBSatelliteLNBParameters &lnb_param = m_lnbs[idx]; if ( lnb_param.tuner_mask & frontend_id ) // lnb for correct tuner? { eDVBSatelliteDiseqcParameters &di_param = lnb_param.m_diseqc_parameters; std::map::iterator sit = lnb_param.m_satellites.find(sat.orbital_position); if ( sit != lnb_param.m_satellites.end()) { int band=0, linked_to=-1, // linked tuner satpos_depends_to=-1, csw = di_param.m_committed_cmd, ucsw = di_param.m_uncommitted_cmd, toneburst = di_param.m_toneburst_param, curRotorPos; fe->getData(6, curRotorPos); fe->getData(7, linked_to); fe->getData(8, satpos_depends_to); if ( sat.frequency > lnb_param.m_lof_threshold ) band |= 1; if (sat.polarisation == eDVBFrontendParametersSatellite::Polarisation::Horizontal) band |= 2; bool rotor=false; bool diseqc=false; if (di_param.m_diseqc_mode >= eDVBSatelliteDiseqcParameters::V1_0) { diseqc=true; if ( di_param.m_committed_cmd < eDVBSatelliteDiseqcParameters::SENDNO ) csw = 0xF0 | (csw << 2); if (di_param.m_committed_cmd <= eDVBSatelliteDiseqcParameters::SENDNO) csw |= band; if ( di_param.m_diseqc_mode == eDVBSatelliteDiseqcParameters::V1_2 ) // ROTOR { rotor=true; if ( curRotorPos == sat.orbital_position ) ret=20; // rotor on correct orbpos = prio 20 else ret=10; // rotor must turn to correct orbpos = prio 10 } else ret = 30; // no rotor = prio 30 } else { csw = band; ret = 40; // no diseqc = prio 40 } if (linked_to != -1) // check for linked tuners.. { eDVBRegisteredFrontend *linked_fe = (eDVBRegisteredFrontend*) linked_to; if (linked_fe->m_inuse) { int ocsw = -1, oucsw = -1, oToneburst = -1, oRotorPos = -1; linked_fe->m_frontend->getData(0, ocsw); linked_fe->m_frontend->getData(1, oucsw); linked_fe->m_frontend->getData(2, oToneburst); linked_fe->m_frontend->getData(6, oRotorPos); #if 0 eDebug("compare csw %02x == lcsw %02x", csw, ocsw); if ( diseqc ) eDebug("compare ucsw %02x == lucsw %02x\ncompare toneburst %02x == oToneburst %02x", ucsw, oucsw, toneburst, oToneburst); if ( rotor ) eDebug("compare pos %d == current pos %d", sat.orbital_position, oRotorPos); #endif if ( (csw != ocsw) || ( diseqc && (ucsw != oucsw || toneburst != oToneburst) ) || ( rotor && oRotorPos != sat.orbital_position ) ) { // eDebug("can not tune this transponder with linked tuner in use!!"); ret=0; } // else // eDebug("OK .. can tune this transponder with linked tuner in use :)"); } } if (satpos_depends_to != -1) // check for linked tuners.. { eDVBRegisteredFrontend *satpos_depends_to_fe = (eDVBRegisteredFrontend*) satpos_depends_to; if ( satpos_depends_to_fe->m_inuse ) { int oRotorPos = -1; satpos_depends_to_fe->m_frontend->getData(6, oRotorPos); if (!rotor || oRotorPos != sat.orbital_position) { // eDebug("can not tune this transponder ... rotor on other tuner is positioned to %d", oRotorPos); ret=0; } } // else // eDebug("OK .. can tune this transponder satpos is correct :)"); } } } } return ret; } #define VOLTAGE(x) (lnb_param.m_increased_voltage ? iDVBFrontend::voltage##x##_5 : iDVBFrontend::voltage##x) RESULT eDVBSatelliteEquipmentControl::prepare(iDVBFrontend &frontend, FRONTENDPARAMETERS &parm, eDVBFrontendParametersSatellite &sat, int frontend_id) { bool linked=false; bool depend_satpos_mode=false; for (int idx=0; idx <= m_lnbidx; ++idx ) { eDVBSatelliteLNBParameters &lnb_param = m_lnbs[idx]; if (!(lnb_param.tuner_mask & frontend_id)) // lnb for correct tuner? continue; eDVBSatelliteDiseqcParameters &di_param = lnb_param.m_diseqc_parameters; eDVBSatelliteRotorParameters &rotor_param = lnb_param.m_rotor_parameters; std::map::iterator sit = lnb_param.m_satellites.find(sat.orbital_position); if ( sit != lnb_param.m_satellites.end()) { eDVBSatelliteSwitchParameters &sw_param = sit->second; int band=0, linked_to=-1, // linked tuner satpos_depends_to=-1, voltage = iDVBFrontend::voltageOff, tone = iDVBFrontend::toneOff, csw = di_param.m_committed_cmd, ucsw = di_param.m_uncommitted_cmd, toneburst = di_param.m_toneburst_param, lastcsw = -1, lastucsw = -1, lastToneburst = -1, lastRotorCmd = -1, curRotorPos = -1; frontend.getData(0, lastcsw); frontend.getData(1, lastucsw); frontend.getData(2, lastToneburst); frontend.getData(5, lastRotorCmd); frontend.getData(6, curRotorPos); frontend.getData(7, linked_to); frontend.getData(8, satpos_depends_to); if (linked_to != -1) { eDVBRegisteredFrontend *linked_fe = (eDVBRegisteredFrontend*) linked_to; if (linked_fe->m_inuse) { eDebug("[SEC] frontend is linked with another and the other one is in use.. so we dont do SEC!!"); linked=true; } } if (satpos_depends_to != -1) { eDVBRegisteredFrontend *satpos_fe = (eDVBRegisteredFrontend*) satpos_depends_to; if (satpos_fe->m_inuse) { if ( di_param.m_diseqc_mode != eDVBSatelliteDiseqcParameters::V1_2 ) continue; eDebug("[SEC] frontend is depending on satpos of other one.. so we dont turn rotor!!"); depend_satpos_mode=true; } } if ( sat.frequency > lnb_param.m_lof_threshold ) band |= 1; if (band&1) parm.FREQUENCY = sat.frequency - lnb_param.m_lof_hi; else parm.FREQUENCY = sat.frequency - lnb_param.m_lof_lo; parm.FREQUENCY = abs(parm.FREQUENCY); if (sat.polarisation == eDVBFrontendParametersSatellite::Polarisation::Horizontal) band |= 2; switch (sat.inversion) { case eDVBFrontendParametersCable::Inversion::On: parm.INVERSION = INVERSION_ON; break; case eDVBFrontendParametersCable::Inversion::Off: parm.INVERSION = INVERSION_OFF; break; default: case eDVBFrontendParametersCable::Inversion::Unknown: parm.INVERSION = INVERSION_AUTO; break; } switch (sat.fec) { default: case eDVBFrontendParametersSatellite::FEC::fNone: eDebug("no fec set.. assume auto"); case eDVBFrontendParametersSatellite::FEC::fAuto: parm.u.qpsk.FEC_INNER = FEC_AUTO; break; case eDVBFrontendParametersSatellite::FEC::f1_2: parm.u.qpsk.FEC_INNER = FEC_1_2; break; case eDVBFrontendParametersSatellite::FEC::f2_3: parm.u.qpsk.FEC_INNER = FEC_2_3; break; case eDVBFrontendParametersSatellite::FEC::f3_4: parm.u.qpsk.FEC_INNER = FEC_3_4; break; case eDVBFrontendParametersSatellite::FEC::f5_6: parm.u.qpsk.FEC_INNER = FEC_5_6; break; case eDVBFrontendParametersSatellite::FEC::f7_8: parm.u.qpsk.FEC_INNER = FEC_7_8; break; } parm.u.qpsk.SYMBOLRATE = sat.symbol_rate; if ( sw_param.m_voltage_mode == eDVBSatelliteSwitchParameters::_14V || ( sat.polarisation == eDVBFrontendParametersSatellite::Polarisation::Vertical && sw_param.m_voltage_mode == eDVBSatelliteSwitchParameters::HV ) ) voltage = VOLTAGE(13); else if ( sw_param.m_voltage_mode == eDVBSatelliteSwitchParameters::_18V || ( sat.polarisation == eDVBFrontendParametersSatellite::Polarisation::Horizontal && sw_param.m_voltage_mode == eDVBSatelliteSwitchParameters::HV ) ) voltage = VOLTAGE(18); if ( (sw_param.m_22khz_signal == eDVBSatelliteSwitchParameters::ON) || ( sw_param.m_22khz_signal == eDVBSatelliteSwitchParameters::HILO && (band&1) ) ) tone = iDVBFrontend::toneOn; else if ( (sw_param.m_22khz_signal == eDVBSatelliteSwitchParameters::OFF) || ( sw_param.m_22khz_signal == eDVBSatelliteSwitchParameters::HILO && !(band&1) ) ) tone = iDVBFrontend::toneOff; eSecCommandList sec_sequence; if (di_param.m_diseqc_mode >= eDVBSatelliteDiseqcParameters::V1_0) { if ( di_param.m_committed_cmd < eDVBSatelliteDiseqcParameters::SENDNO ) csw = 0xF0 | (csw << 2); if (di_param.m_committed_cmd <= eDVBSatelliteDiseqcParameters::SENDNO) csw |= band; bool send_csw = (di_param.m_committed_cmd != eDVBSatelliteDiseqcParameters::SENDNO); bool changed_csw = send_csw && csw != lastcsw; bool send_ucsw = (di_param.m_uncommitted_cmd && di_param.m_diseqc_mode > eDVBSatelliteDiseqcParameters::V1_0); bool changed_ucsw = send_ucsw && ucsw != lastucsw; bool send_burst = (di_param.m_toneburst_param != eDVBSatelliteDiseqcParameters::NO); bool changed_burst = send_burst && toneburst != lastToneburst; int send_mask = 0; /* 1 must send csw 2 must send ucsw 4 send toneburst first 8 send toneburst at end */ if (changed_burst) // toneburst first and toneburst changed { if (di_param.m_command_order&1) { send_mask |= 4; if ( send_csw ) send_mask |= 1; if ( send_ucsw ) send_mask |= 2; } else send_mask |= 8; } if (changed_ucsw) { send_mask |= 2; if ((di_param.m_command_order&4) && send_csw) send_mask |= 1; if (di_param.m_command_order==4 && send_burst) send_mask |= 8; } if (changed_csw) { if ( di_param.m_use_fast && di_param.m_committed_cmd < eDVBSatelliteDiseqcParameters::SENDNO && (lastcsw & 0xF0) && ((csw / 4) == (lastcsw / 4)) ) eDebug("dont send committed cmd (fast diseqc)"); else { send_mask |= 1; if (!(di_param.m_command_order&4) && send_ucsw) send_mask |= 2; if (!(di_param.m_command_order&1) && send_burst) send_mask |= 8; } } #if 0 eDebugNoNewLine("sendmask: "); for (int i=3; i >= 0; --i) if ( send_mask & (1<= 0) // Northern Hemisphere { int tmp=(int)round( fabs( 180 - satHourAngle ) * 10.0 ); RotorCmd = (tmp/10)*0x10 + gotoXTable[ tmp % 10 ]; if (satHourAngle < 180) // the east RotorCmd |= 0xE000; else // west RotorCmd |= 0xD000; } else // Southern Hemisphere { if (satHourAngle < 180) // the east { int tmp=(int)round( fabs( satHourAngle ) * 10.0 ); RotorCmd = (tmp/10)*0x10 + gotoXTable[ tmp % 10 ]; RotorCmd |= 0xD000; } else // west { int tmp=(int)round( fabs( 360 - satHourAngle ) * 10.0 ); RotorCmd = (tmp/10)*0x10 + gotoXTable[ tmp % 10 ]; RotorCmd |= 0xE000; } } eDebug("RotorCmd = %04x", RotorCmd); } } } if ( send_mask ) { sec_sequence.push_back( eSecCommand(eSecCommand::SET_TONE, iDVBFrontend::toneOff) ); sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, 15) ); eSecCommand::pair compare; compare.voltage = iDVBFrontend::voltageOff; compare.steps = +4; // the next is a check if voltage is switched off.. then we first set a voltage :) // else we set voltage after all diseqc stuff.. sec_sequence.push_back( eSecCommand(eSecCommand::IF_NOT_VOLTAGE_GOTO, compare) ); if ( RotorCmd != -1 && RotorCmd != lastRotorCmd ) // TODO .. add handling for turning rotor without measure inputpower compare.voltage = VOLTAGE(18); else compare.voltage = voltage; // voltage already correct ? sec_sequence.push_back( eSecCommand(eSecCommand::IF_VOLTAGE_GOTO, compare) ); compare.steps = +3; sec_sequence.push_back( eSecCommand(eSecCommand::SET_VOLTAGE, compare.voltage) ); // voltage was disabled..so we wait a longer time .. for normal switches 200ms should be enough sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, 200) ); for (int seq_repeat = 0; seq_repeat < (di_param.m_seq_repeat?2:1); ++seq_repeat) { if ( send_mask & 4 ) { sec_sequence.push_back( eSecCommand(eSecCommand::SEND_TONEBURST, di_param.m_toneburst_param) ); sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, 50) ); } int loops=0; if ( send_mask & 1 ) ++loops; if ( send_mask & 2 ) ++loops; for ( int i=0; i < di_param.m_repeats; ++i ) loops *= 2; for ( int i = 0; i < loops;) // fill commands... { eDVBDiseqcCommand diseqc; diseqc.len = 4; diseqc.data[0] = i ? 0xE1 : 0xE0; diseqc.data[1] = 0x10; if ( (send_mask & 2) && (di_param.m_command_order & 4) ) { diseqc.data[2] = 0x39; diseqc.data[3] = ucsw; } else if ( send_mask & 1 ) { diseqc.data[2] = 0x38; diseqc.data[3] = csw; } else { diseqc.data[2] = 0x00; diseqc.data[3] = 0x00; } sec_sequence.push_back( eSecCommand(eSecCommand::SEND_DISEQC, diseqc) ); i++; if ( i < loops ) { int cmd=0; if (diseqc.data[2] == 0x38 && (send_mask & 2)) cmd=0x39; else if (diseqc.data[2] == 0x39 && (send_mask & 1)) cmd=0x38; if (cmd) { static int delay = (120 - 54) / 2; // standard says 100msek between two repeated commands sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, delay) ); diseqc.data[2]=cmd; diseqc.data[3]=(cmd==0x38) ? csw : ucsw; sec_sequence.push_back( eSecCommand(eSecCommand::SEND_DISEQC, diseqc) ); ++i; if ( i < loops ) sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, delay ) ); else sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, 50) ); } else // delay 120msek when no command is in repeat gap sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, 120) ); } else sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, 50) ); } if ( send_mask & 8 ) // toneburst at end of sequence { sec_sequence.push_back( eSecCommand(eSecCommand::SEND_TONEBURST, di_param.m_toneburst_param) ); sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, 50) ); } } } if ( RotorCmd != -1 && RotorCmd != lastRotorCmd ) { eSecCommand::pair compare; compare.voltage = iDVBFrontend::voltageOff; compare.steps = +4; // the next is a check if voltage is switched off.. then we first set a voltage :) // else we set voltage after all diseqc stuff.. sec_sequence.push_back( eSecCommand(eSecCommand::IF_NOT_VOLTAGE_GOTO, compare) ); // TODO .. add handling for turning rotor without measure inputpower sec_sequence.push_back( eSecCommand(eSecCommand::SET_VOLTAGE, VOLTAGE(18)) ); // voltage was disabled..so we wait a longer time .. sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, 500) ); sec_sequence.push_back( eSecCommand(eSecCommand::GOTO, +7) ); // no need to send stop rotor cmd if (send_mask) sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, 750) ); // wait 750ms after send switch cmd else sec_sequence.push_back( eSecCommand(eSecCommand::GOTO, +1) ); eDVBDiseqcCommand diseqc; diseqc.len = 3; diseqc.data[0] = 0xE0; diseqc.data[1] = 0x31; // positioner diseqc.data[2] = 0x60; // stop sec_sequence.push_back( eSecCommand(eSecCommand::IF_ROTORPOS_VALID_GOTO, +5) ); sec_sequence.push_back( eSecCommand(eSecCommand::SEND_DISEQC, diseqc) ); sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, 50) ); sec_sequence.push_back( eSecCommand(eSecCommand::SEND_DISEQC, diseqc) ); // wait 300msec after send rotor stop cmd sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, 300) ); diseqc.data[0] = 0xE0; diseqc.data[1] = 0x31; // positioner if ( useGotoXX ) { diseqc.len = 5; diseqc.data[2] = 0x6E; // drive to angular position diseqc.data[3] = ((RotorCmd & 0xFF00) / 0x100); diseqc.data[4] = RotorCmd & 0xFF; } else { diseqc.len = 4; diseqc.data[2] = 0x6B; // goto stored sat position diseqc.data[3] = RotorCmd; diseqc.data[4] = 0x00; } if ( rotor_param.m_inputpower_parameters.m_use ) { // use measure rotor input power to detect rotor state eSecCommand::rotor cmd; eSecCommand::pair compare; compare.voltage = VOLTAGE(18); compare.steps = +2; sec_sequence.push_back( eSecCommand(eSecCommand::IF_VOLTAGE_GOTO, compare) ); sec_sequence.push_back( eSecCommand(eSecCommand::SET_VOLTAGE, compare.voltage) ); // measure idle power values sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, 200) ); // wait 200msec after voltage change sec_sequence.push_back( eSecCommand(eSecCommand::MEASURE_IDLE_INPUTPOWER, 1) ); compare.voltage = 1; compare.steps = -2; sec_sequence.push_back( eSecCommand(eSecCommand::IF_MEASURE_IDLE_WAS_NOT_OK_GOTO, compare) ); sec_sequence.push_back( eSecCommand(eSecCommand::SET_VOLTAGE, VOLTAGE(13)) ); sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, 200) ); // wait 200msec before measure sec_sequence.push_back( eSecCommand(eSecCommand::MEASURE_IDLE_INPUTPOWER, 0) ); compare.voltage = 0; sec_sequence.push_back( eSecCommand(eSecCommand::IF_MEASURE_IDLE_WAS_NOT_OK_GOTO, compare) ); //////////////////////////// sec_sequence.push_back( eSecCommand(eSecCommand::SET_POWER_LIMITING_MODE, eSecCommand::modeStatic) ); sec_sequence.push_back( eSecCommand(eSecCommand::SET_ROTOR_DISEQC_RETRYS, 2) ); // 2 retries sec_sequence.push_back( eSecCommand(eSecCommand::INVALIDATE_CURRENT_ROTORPARMS) ); sec_sequence.push_back( eSecCommand(eSecCommand::SEND_DISEQC, diseqc) ); sec_sequence.push_back( eSecCommand(eSecCommand::SET_TIMEOUT, 40) ); // 2 seconds rotor start timout // rotor start loop sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, 50) ); // 50msec delay sec_sequence.push_back( eSecCommand(eSecCommand::MEASURE_RUNNING_INPUTPOWER) ); cmd.direction=1; // check for running rotor cmd.deltaA=rotor_param.m_inputpower_parameters.m_delta; cmd.steps=+5; cmd.okcount=0; sec_sequence.push_back( eSecCommand(eSecCommand::IF_INPUTPOWER_DELTA_GOTO, cmd ) ); // check if rotor has started sec_sequence.push_back( eSecCommand(eSecCommand::IF_TIMEOUT_GOTO, +2 ) ); // timeout .. we assume now the rotor is already at the correct position sec_sequence.push_back( eSecCommand(eSecCommand::GOTO, -4) ); // goto loop start sec_sequence.push_back( eSecCommand(eSecCommand::IF_NO_MORE_ROTOR_DISEQC_RETRYS_GOTO, +9 ) ); // timeout .. we assume now the rotor is already at the correct position sec_sequence.push_back( eSecCommand(eSecCommand::GOTO, -8) ); // goto loop start //////////////////// sec_sequence.push_back( eSecCommand(eSecCommand::SET_TIMEOUT, 2400) ); // 2 minutes running timeout sec_sequence.push_back( eSecCommand(eSecCommand::SET_VOLTAGE, VOLTAGE(18)) ); // rotor running loop sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, 50) ); // wait 50msec sec_sequence.push_back( eSecCommand(eSecCommand::MEASURE_RUNNING_INPUTPOWER) ); cmd.direction=0; // check for stopped rotor cmd.steps=+3; sec_sequence.push_back( eSecCommand(eSecCommand::IF_INPUTPOWER_DELTA_GOTO, cmd ) ); sec_sequence.push_back( eSecCommand(eSecCommand::IF_TIMEOUT_GOTO, +3 ) ); // timeout ? this should never happen sec_sequence.push_back( eSecCommand(eSecCommand::GOTO, -4) ); // running loop start ///////////////////// sec_sequence.push_back( eSecCommand(eSecCommand::UPDATE_CURRENT_ROTORPARAMS) ); sec_sequence.push_back( eSecCommand(eSecCommand::SET_POWER_LIMITING_MODE, eSecCommand::modeDynamic) ); frontend.setData(3, RotorCmd); frontend.setData(4, sat.orbital_position); } else eFatal("rotor turning without inputpowermeasure not implemented yet"); } } else csw = band; frontend.setData(0, csw); frontend.setData(1, ucsw); frontend.setData(2, di_param.m_toneburst_param); if ( linked ) return 0; eSecCommand::pair compare; compare.voltage = voltage; compare.steps = +3; sec_sequence.push_back( eSecCommand(eSecCommand::IF_VOLTAGE_GOTO, compare) ); // voltage already correct ? sec_sequence.push_back( eSecCommand(eSecCommand::SET_VOLTAGE, voltage) ); sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, 10) ); sec_sequence.push_back( eSecCommand(eSecCommand::SET_TONE, tone) ); sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, 15) ); frontend.setSecSequence(sec_sequence); return 0; } } eDebug("found no useable satellite configuration for orbital position (%d)", sat.orbital_position ); return -1; } RESULT eDVBSatelliteEquipmentControl::clear() { for (int i=0; i < m_lnbidx; ++i) { m_lnbs[i].m_satellites.clear(); m_lnbs[i].tuner_mask = 0; } m_lnbidx=-1; // clear linked tuner configuration for (eSmartPtrList::iterator it(m_avail_frontends.begin()); it != m_avail_frontends.end(); ++it) it->m_frontend->setData(7, -1); return 0; } // helper function for setTunerLinked and setTunerDepends RESULT eDVBSatelliteEquipmentControl::setDependencyPointers( int tu1, int tu2, int dest_data_byte ) { if (tu1 == tu2) return -1; eDVBRegisteredFrontend *p1=NULL, *p2=NULL; int cnt=0; for (eSmartPtrList::iterator it(m_avail_frontends.begin()); it != m_avail_frontends.end(); ++it, ++cnt) { if (cnt == tu1) p1 = *it; else if (cnt == tu2) p2 = *it; } if (p1 && p2) { p1->m_frontend->setData(dest_data_byte, (int)p2); // this is evil.. p2->m_frontend->setData(dest_data_byte, (int)p1); return 0; } return -1; } /* LNB Specific Parameters */ RESULT eDVBSatelliteEquipmentControl::addLNB() { if ( m_lnbidx < (int)(sizeof(m_lnbs) / sizeof(eDVBSatelliteLNBParameters))) m_curSat=m_lnbs[++m_lnbidx].m_satellites.end(); else { eDebug("no more LNB free... cnt is %d", m_lnbidx); return -ENOSPC; } return 0; } RESULT eDVBSatelliteEquipmentControl::setLNBTunerMask(int tunermask) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].tuner_mask = tunermask; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setLNBLOFL(int lofl) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_lof_lo = lofl; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setLNBLOFH(int lofh) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_lof_hi = lofh; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setLNBThreshold(int threshold) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_lof_threshold = threshold; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setLNBIncreasedVoltage(bool onoff) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_increased_voltage = onoff; else return -ENOENT; return 0; } /* DiSEqC Specific Parameters */ RESULT eDVBSatelliteEquipmentControl::setDiSEqCMode(int diseqcmode) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_diseqc_parameters.m_diseqc_mode = (eDVBSatelliteDiseqcParameters::t_diseqc_mode)diseqcmode; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setToneburst(int toneburst) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_diseqc_parameters.m_toneburst_param = (eDVBSatelliteDiseqcParameters::t_toneburst_param)toneburst; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setRepeats(int repeats) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_diseqc_parameters.m_repeats=repeats; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setCommittedCommand(int command) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_diseqc_parameters.m_committed_cmd=command; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setUncommittedCommand(int command) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_diseqc_parameters.m_uncommitted_cmd = command; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setCommandOrder(int order) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_diseqc_parameters.m_command_order=order; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setFastDiSEqC(bool onoff) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_diseqc_parameters.m_use_fast=onoff; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setSeqRepeat(bool onoff) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_diseqc_parameters.m_seq_repeat = onoff; else return -ENOENT; return 0; } /* Rotor Specific Parameters */ RESULT eDVBSatelliteEquipmentControl::setLongitude(float longitude) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_rotor_parameters.m_gotoxx_parameters.m_longitude=longitude; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setLatitude(float latitude) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_rotor_parameters.m_gotoxx_parameters.m_latitude=latitude; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setLoDirection(int direction) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_rotor_parameters.m_gotoxx_parameters.m_lo_direction=direction; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setLaDirection(int direction) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_rotor_parameters.m_gotoxx_parameters.m_la_direction=direction; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setUseInputpower(bool onoff) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_rotor_parameters.m_inputpower_parameters.m_use=onoff; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setInputpowerDelta(int delta) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_rotor_parameters.m_inputpower_parameters.m_delta=delta; else return -ENOENT; return 0; } /* Satellite Specific Parameters */ RESULT eDVBSatelliteEquipmentControl::addSatellite(int orbital_position) { if ( currentLNBValid() ) { std::map::iterator it = m_lnbs[m_lnbidx].m_satellites.find(orbital_position); if ( it == m_lnbs[m_lnbidx].m_satellites.end() ) { std::pair::iterator, bool > ret = m_lnbs[m_lnbidx].m_satellites.insert( std::pair(orbital_position, eDVBSatelliteSwitchParameters()) ); if ( ret.second ) m_curSat = ret.first; else return -ENOMEM; } else return -EEXIST; } else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setVoltageMode(int mode) { if ( currentLNBValid() && m_curSat != m_lnbs[m_lnbidx].m_satellites.end() ) m_curSat->second.m_voltage_mode = (eDVBSatelliteSwitchParameters::t_voltage_mode)mode; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setToneMode(int mode) { if ( currentLNBValid() ) { if ( m_curSat != m_lnbs[m_lnbidx].m_satellites.end() ) m_curSat->second.m_22khz_signal = (eDVBSatelliteSwitchParameters::t_22khz_signal)mode; else return -EPERM; } else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setRotorPosNum(int rotor_pos_num) { if ( currentLNBValid() ) { if ( m_curSat != m_lnbs[m_lnbidx].m_satellites.end() ) m_curSat->second.m_rotorPosNum=rotor_pos_num; else return -EPERM; } else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setTunerLinked(int tu1, int tu2) { return setDependencyPointers(tu1, tu2, 7); } RESULT eDVBSatelliteEquipmentControl::setTunerDepends(int tu1, int tu2) { return setDependencyPointers(tu1, tu2, 8); } bool eDVBSatelliteEquipmentControl::isRotorMoving() { return m_rotorMoving; } void eDVBSatelliteEquipmentControl::setRotorMoving(bool b) { m_rotorMoving=b; }