#include #include #include #if HAVE_DVB_API_VERSION < 3 #define INVERSION Inversion #define FREQUENCY Frequency #define FEC_INNER FEC_inner #define SYMBOLRATE SymbolRate #else #define INVERSION inversion #define FREQUENCY frequency #define FEC_INNER fec_inner #define SYMBOLRATE symbol_rate #endif #include DEFINE_REF(eDVBSatelliteEquipmentControl); eDVBSatelliteEquipmentControl *eDVBSatelliteEquipmentControl::instance; eDVBSatelliteEquipmentControl::eDVBSatelliteEquipmentControl() :m_lnbidx(-1), m_curSat(m_lnbs[0].m_satellites.end()) { if (!instance) instance = this; clear(); // ASTRA addLNB(); setLNBTunerMask(1); setLNBLOFL(9750000); setLNBThreshold(11750000); setLNBLOFH(10600000); setDiSEqCMode(eDVBSatelliteDiseqcParameters::V1_0); setToneburst(eDVBSatelliteDiseqcParameters::NO); setRepeats(0); setCommittedCommand(eDVBSatelliteDiseqcParameters::AA); setCommandOrder(0); // committed, toneburst setFastDiSEqC(false); setSeqRepeat(false); addSatellite(192); setVoltageMode(eDVBSatelliteSwitchParameters::HV); setToneMode(eDVBSatelliteSwitchParameters::HILO); // HOTBIRD addLNB(); setLNBTunerMask(1); setLNBLOFL(9750000); setLNBLOFH(10600000); setLNBThreshold(11750000); setDiSEqCMode(eDVBSatelliteDiseqcParameters::V1_0); setToneburst(eDVBSatelliteDiseqcParameters::NO); setRepeats(0); setCommittedCommand(eDVBSatelliteDiseqcParameters::AB); setCommandOrder(0); // committed, toneburst setFastDiSEqC(false); setSeqRepeat(false); addSatellite(130); setVoltageMode(eDVBSatelliteSwitchParameters::HV); setToneMode(eDVBSatelliteSwitchParameters::HILO); } RESULT eDVBSatelliteEquipmentControl::prepare(iDVBFrontend &frontend, FRONTENDPARAMETERS &parm, eDVBFrontendParametersSatellite &sat) { for (int idx=0; idx <= m_lnbidx; ++idx ) { eDVBSatelliteLNBParameters &lnb_param = m_lnbs[idx]; eDVBSatelliteDiseqcParameters &di_param = lnb_param.m_diseqc_parameters; eDVBSatelliteRotorParameters &rotor_param = lnb_param.m_rotor_parameters; std::map::iterator sit = lnb_param.m_satellites.find(sat.orbital_position); if ( sit != lnb_param.m_satellites.end()) { eDVBSatelliteSwitchParameters &sw_param = sit->second; int hi=0, voltage = iDVBFrontend::voltageOff, tone = iDVBFrontend::toneOff, csw = di_param.m_committed_cmd, ucsw = di_param.m_uncommitted_cmd, toneburst = di_param.m_toneburst_param, lastcsw = -1, lastucsw = -1, lastToneburst = -1, lastRotorCmd = -1, curRotorPos = -1; frontend.getData(0, lastcsw); frontend.getData(1, lastucsw); frontend.getData(2, lastToneburst); frontend.getData(5, lastRotorCmd); frontend.getData(6, curRotorPos); if ( sat.frequency > lnb_param.m_lof_threshold ) hi = 1; if (hi) parm.FREQUENCY = sat.frequency - lnb_param.m_lof_hi; else parm.FREQUENCY = sat.frequency - lnb_param.m_lof_lo; parm.INVERSION = (!sat.inversion) ? INVERSION_ON : INVERSION_OFF; switch (sat.fec) { default: case eDVBFrontendParametersSatellite::FEC::fNone: eDebug("no fec set.. assume auto"); case eDVBFrontendParametersSatellite::FEC::fAuto: parm.u.qpsk.FEC_INNER = FEC_AUTO; break; case eDVBFrontendParametersSatellite::FEC::f1_2: parm.u.qpsk.FEC_INNER = FEC_1_2; break; case eDVBFrontendParametersSatellite::FEC::f2_3: parm.u.qpsk.FEC_INNER = FEC_2_3; break; case eDVBFrontendParametersSatellite::FEC::f3_4: parm.u.qpsk.FEC_INNER = FEC_3_4; break; case eDVBFrontendParametersSatellite::FEC::f5_6: parm.u.qpsk.FEC_INNER = FEC_5_6; break; case eDVBFrontendParametersSatellite::FEC::f7_8: parm.u.qpsk.FEC_INNER = FEC_7_8; break; } parm.u.qpsk.SYMBOLRATE = sat.symbol_rate; if ( sw_param.m_voltage_mode == eDVBSatelliteSwitchParameters::_14V || ( sat.polarisation == eDVBFrontendParametersSatellite::Polarisation::Vertical && sw_param.m_voltage_mode == eDVBSatelliteSwitchParameters::HV ) ) voltage = iDVBFrontend::voltage13; else if ( sw_param.m_voltage_mode == eDVBSatelliteSwitchParameters::_18V || ( sat.polarisation == eDVBFrontendParametersSatellite::Polarisation::Horizontal && sw_param.m_voltage_mode == eDVBSatelliteSwitchParameters::HV ) ) voltage = iDVBFrontend::voltage18; if ( (sw_param.m_22khz_signal == eDVBSatelliteSwitchParameters::ON) || ( sw_param.m_22khz_signal == eDVBSatelliteSwitchParameters::HILO && hi ) ) tone = iDVBFrontend::toneOn; else if ( (sw_param.m_22khz_signal == eDVBSatelliteSwitchParameters::OFF) || ( sw_param.m_22khz_signal == eDVBSatelliteSwitchParameters::HILO && !hi ) ) tone = iDVBFrontend::toneOff; eSecCommandList sec_sequence; if (di_param.m_diseqc_mode >= eDVBSatelliteDiseqcParameters::V1_0) { if ( di_param.m_committed_cmd < eDVBSatelliteDiseqcParameters::SENDNO ) { csw = 0xF0 | (csw << 2); if (hi) csw |= 1; if (sat.polarisation == eDVBFrontendParametersSatellite::Polarisation::Horizontal) csw |= 2; } bool send_csw = (di_param.m_committed_cmd != eDVBSatelliteDiseqcParameters::SENDNO); bool changed_csw = send_csw && csw != lastcsw; bool send_ucsw = (di_param.m_uncommitted_cmd && di_param.m_diseqc_mode > eDVBSatelliteDiseqcParameters::V1_0); bool changed_ucsw = send_ucsw && ucsw != lastucsw; bool send_burst = (di_param.m_toneburst_param != eDVBSatelliteDiseqcParameters::NO); bool changed_burst = send_burst && toneburst != lastToneburst; bool send_diseqc = changed_ucsw; if (!send_diseqc) send_diseqc = changed_burst && (send_ucsw || send_csw); if (!send_diseqc) { send_diseqc = changed_csw; if ( send_diseqc && di_param.m_use_fast && (csw & 0xF0) && (lastcsw & 0xF0) && ((csw / 4) == (lastcsw / 4)) ) send_diseqc = false; } if ( send_diseqc || changed_burst ) { sec_sequence.push_back( eSecCommand(eSecCommand::SET_TONE, iDVBFrontend::toneOff) ); eSecCommand::pair compare; compare.voltage = voltage; compare.steps = +3; sec_sequence.push_back( eSecCommand(eSecCommand::IF_VOLTAGE_GOTO, compare) ); // voltage already correct ? sec_sequence.push_back( eSecCommand(eSecCommand::SET_VOLTAGE, voltage) ); sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, 50) ); } for (int seq_repeat = 0; seq_repeat < (di_param.m_seq_repeat?2:1); ++seq_repeat) { if ( di_param.m_command_order & 1 && // toneburst at begin of sequence changed_burst && di_param.m_toneburst_param != eDVBSatelliteDiseqcParameters::NO ) { sec_sequence.push_back( eSecCommand(eSecCommand::SEND_TONEBURST, di_param.m_toneburst_param) ); sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, 50) ); frontend.setData(2, di_param.m_toneburst_param); } if ( send_diseqc ) { int loops=0; if ( send_csw ) ++loops; if ( send_ucsw ) ++loops; for ( int i=0; i < di_param.m_repeats; ++i ) loops *= 2; for ( int i = 0; i < loops;) // fill commands... { eDVBDiseqcCommand diseqc; diseqc.len = 4; diseqc.data[0] = i ? 0xE1 : 0xE0; diseqc.data[1] = 0x10; if ( !send_csw || (send_ucsw && (di_param.m_command_order & 4) ) ) { diseqc.data[2] = 0x39; diseqc.data[3] = ucsw; } else { diseqc.data[2] = 0x38; diseqc.data[3] = csw; } sec_sequence.push_back( eSecCommand(eSecCommand::SEND_DISEQC, diseqc) ); i++; if ( i < loops ) { int cmd=0; if (diseqc.data[2] == 0x38 && send_ucsw) cmd=0x39; else if (diseqc.data[2] == 0x39 && send_csw) cmd=0x38; if (cmd) { static int delay = (120 - 54) / 2; // standard says 100msek between two repeated commands sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, delay) ); diseqc.data[2]=cmd; diseqc.data[3]=(cmd==0x38) ? csw : ucsw; sec_sequence.push_back( eSecCommand(eSecCommand::SEND_DISEQC, diseqc) ); ++i; if ( i < loops ) sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, delay ) ); else sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, 50) ); } else // delay 120msek when no command is in repeat gap sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, 120) ); } else sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, 50) ); frontend.setData(0, csw); frontend.setData(1, ucsw); } } if ( !(di_param.m_command_order & 1) && // toneburst at end of sequence (changed_burst || send_diseqc) && di_param.m_toneburst_param != eDVBSatelliteDiseqcParameters::NO ) { sec_sequence.push_back( eSecCommand(eSecCommand::SEND_TONEBURST, di_param.m_toneburst_param) ); sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, 50) ); frontend.setData(2, di_param.m_toneburst_param); } } if ( di_param.m_diseqc_mode == eDVBSatelliteDiseqcParameters::V1_2 ) { int RotorCmd=0; bool useGotoXX = false; if (sw_param.m_rotorPosNum) // we have stored rotor pos? RotorCmd=sw_param.m_rotorPosNum; else // we must calc gotoxx cmd { eDebug("Entry for %d,%d° not in Rotor Table found... i try gotoXX°", sat.orbital_position / 10, sat.orbital_position % 10 ); useGotoXX = true; int satDir = sat.orbital_position < 0 ? eDVBSatelliteRotorParameters::WEST : eDVBSatelliteRotorParameters::EAST; double SatLon = abs(sat.orbital_position)/10.00, SiteLat = rotor_param.m_gotoxx_parameters.m_latitude, SiteLon = rotor_param.m_gotoxx_parameters.m_longitude; if ( rotor_param.m_gotoxx_parameters.m_la_direction == eDVBSatelliteRotorParameters::SOUTH ) SiteLat = -SiteLat; if ( rotor_param.m_gotoxx_parameters.m_lo_direction == eDVBSatelliteRotorParameters::WEST ) SiteLon = 360 - SiteLon; if (satDir == eDVBSatelliteRotorParameters::WEST ) SatLon = 360 - SatLon; eDebug("siteLatitude = %lf, siteLongitude = %lf, %lf degrees", SiteLat, SiteLon, SatLon ); double satHourAngle = calcSatHourangle( SatLon, SiteLat, SiteLon ); eDebug("PolarmountHourAngle=%lf", satHourAngle ); static int gotoXTable[10] = { 0x00, 0x02, 0x03, 0x05, 0x06, 0x08, 0x0A, 0x0B, 0x0D, 0x0E }; if (SiteLat >= 0) // Northern Hemisphere { int tmp=(int)round( fabs( 180 - satHourAngle ) * 10.0 ); RotorCmd = (tmp/10)*0x10 + gotoXTable[ tmp % 10 ]; if (satHourAngle < 180) // the east RotorCmd |= 0xE000; else // west RotorCmd |= 0xD000; } else // Southern Hemisphere { if (satHourAngle < 180) // the east { int tmp=(int)round( fabs( satHourAngle ) * 10.0 ); RotorCmd = (tmp/10)*0x10 + gotoXTable[ tmp % 10 ]; RotorCmd |= 0xD000; } else // west { int tmp=(int)round( fabs( 360 - satHourAngle ) * 10.0 ); RotorCmd = (tmp/10)*0x10 + gotoXTable[ tmp % 10 ]; RotorCmd |= 0xE000; } } eDebug("RotorCmd = %04x", RotorCmd); } if ( RotorCmd != lastRotorCmd ) { if ( changed_burst || send_diseqc ) { // override first voltage change *(++(++sec_sequence.begin()))=eSecCommand(eSecCommand::SET_VOLTAGE, iDVBFrontend::voltage13); // wait 1 second after first switch diseqc command sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, 1000) ); } else // no other diseqc commands before { sec_sequence.push_back( eSecCommand(eSecCommand::SET_TONE, iDVBFrontend::toneOff) ); sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, 15) ); // wait 15msec after tone change eSecCommand::pair compare; compare.voltage = voltage; compare.steps = +3; sec_sequence.push_back( eSecCommand(eSecCommand::IF_VOLTAGE_GOTO, compare) ); // voltage already correct ? sec_sequence.push_back( eSecCommand(eSecCommand::SET_VOLTAGE, iDVBFrontend::voltage13) ); sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, 50) ); // wait 50msec after voltage change } eDVBDiseqcCommand diseqc; diseqc.data[0] = 0xE0; diseqc.data[1] = 0x31; // positioner if ( useGotoXX ) { diseqc.len = 5; diseqc.data[2] = 0x6E; // drive to angular position diseqc.data[3] = ((RotorCmd & 0xFF00) / 0x100); diseqc.data[4] = RotorCmd & 0xFF; } else { diseqc.len = 4; diseqc.data[2] = 0x6B; // goto stored sat position diseqc.data[3] = RotorCmd; } if ( rotor_param.m_inputpower_parameters.m_use ) { // use measure rotor input power to detect rotor state eSecCommand::rotor cmd; // measure idle power values sec_sequence.push_back( eSecCommand(eSecCommand::IF_IDLE_INPUTPOWER_AVAIL_GOTO, +8) ); // already measured? sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, 50) ); // wait 50msec after voltage change sec_sequence.push_back( eSecCommand(eSecCommand::MEASURE_IDLE_INPUTPOWER, 0) ); sec_sequence.push_back( eSecCommand(eSecCommand::SET_VOLTAGE, iDVBFrontend::voltage18) ); sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, 100) ); // wait 100msec before measure sec_sequence.push_back( eSecCommand(eSecCommand::MEASURE_IDLE_INPUTPOWER, 1) ); sec_sequence.push_back( eSecCommand(eSecCommand::SET_VOLTAGE, iDVBFrontend::voltage13) ); // back to lower voltage sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, 50) ); // wait 50msec //////////////////////////// sec_sequence.push_back( eSecCommand(eSecCommand::SET_POWER_LIMITING_MODE, eSecCommand::modeStatic) ); sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, 50) ); // wait 50msec after voltage change sec_sequence.push_back( eSecCommand(eSecCommand::SEND_DISEQC, diseqc) ); sec_sequence.push_back( eSecCommand(eSecCommand::SET_TIMEOUT, 40) ); // 2 seconds rotor start timout // rotor start loop sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, 50) ); // 50msec delay sec_sequence.push_back( eSecCommand(eSecCommand::MEASURE_RUNNING_INPUTPOWER) ); cmd.direction=1; // check for running rotor cmd.deltaA=rotor_param.m_inputpower_parameters.m_delta; cmd.steps=+3; cmd.okcount=0; sec_sequence.push_back( eSecCommand(eSecCommand::IF_INPUTPOWER_DELTA_GOTO, cmd ) ); // check if rotor has started sec_sequence.push_back( eSecCommand(eSecCommand::IF_TIMEOUT_GOTO, +10 ) ); // timeout .. we assume now the rotor is already at the correct position sec_sequence.push_back( eSecCommand(eSecCommand::GOTO, -4) ); // goto loop start //////////////////// sec_sequence.push_back( eSecCommand(eSecCommand::SET_TIMEOUT, 2400) ); // 2 minutes running timeout sec_sequence.push_back( eSecCommand(eSecCommand::SET_VOLTAGE, iDVBFrontend::voltage18) ); sec_sequence.push_back( eSecCommand(eSecCommand::SET_POWER_LIMITING_MODE, eSecCommand::modeDynamic) ); // rotor running loop sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, 50) ); // wait 50msec sec_sequence.push_back( eSecCommand(eSecCommand::MEASURE_RUNNING_INPUTPOWER) ); cmd.direction=0; // check for stopped rotor cmd.steps=+3; sec_sequence.push_back( eSecCommand(eSecCommand::IF_INPUTPOWER_DELTA_GOTO, cmd ) ); sec_sequence.push_back( eSecCommand(eSecCommand::IF_TIMEOUT_GOTO, +3 ) ); // timeout ? this should never happen sec_sequence.push_back( eSecCommand(eSecCommand::GOTO, -4) ); // running loop start ///////////////////// sec_sequence.push_back( eSecCommand(eSecCommand::UPDATE_CURRENT_ROTORPARAMS) ); frontend.setData(3, RotorCmd); frontend.setData(4, sat.orbital_position); } else eFatal("rotor turning without inputpowermeasure not implemented yet"); } } } eSecCommand::pair compare; compare.voltage = voltage; compare.steps = +3; sec_sequence.push_back( eSecCommand(eSecCommand::IF_VOLTAGE_GOTO, compare) ); // voltage already correct ? sec_sequence.push_back( eSecCommand(eSecCommand::SET_VOLTAGE, voltage) ); sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, 10) ); sec_sequence.push_back( eSecCommand(eSecCommand::SET_TONE, tone) ); sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, 15) ); frontend.setSecSequence(sec_sequence); return 0; } } eDebug("found no satellite configuration for orbital position (%d)", sat.orbital_position ); return -1; } RESULT eDVBSatelliteEquipmentControl::clear() { for (int i=0; i < m_lnbidx; ++i) { m_lnbs[i].m_satellites.clear(); m_lnbs[i].tuner_mask = 0; } m_lnbidx=-1; return 0; } /* LNB Specific Parameters */ RESULT eDVBSatelliteEquipmentControl::addLNB() { if ( m_lnbidx < (int)(sizeof(m_lnbs) / sizeof(eDVBSatelliteLNBParameters))) m_curSat=m_lnbs[++m_lnbidx].m_satellites.end(); else { eDebug("no more LNB free... cnt is %d", m_lnbidx); return -ENOSPC; } return 0; } RESULT eDVBSatelliteEquipmentControl::setLNBTunerMask(int tunermask) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].tuner_mask = tunermask; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setLNBLOFL(int lofl) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_lof_lo = lofl; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setLNBLOFH(int lofh) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_lof_hi = lofh; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setLNBThreshold(int threshold) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_lof_threshold = threshold; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setLNBIncreasedVoltage(bool onoff) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_increased_voltage = onoff; else return -ENOENT; return 0; } /* DiSEqC Specific Parameters */ RESULT eDVBSatelliteEquipmentControl::setDiSEqCMode(int diseqcmode) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_diseqc_parameters.m_diseqc_mode = (eDVBSatelliteDiseqcParameters::t_diseqc_mode)diseqcmode; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setToneburst(int toneburst) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_diseqc_parameters.m_toneburst_param = (eDVBSatelliteDiseqcParameters::t_toneburst_param)toneburst; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setRepeats(int repeats) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_diseqc_parameters.m_repeats=repeats; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setCommittedCommand(int command) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_diseqc_parameters.m_committed_cmd=command; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setUncommittedCommand(int command) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_diseqc_parameters.m_uncommitted_cmd = command; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setCommandOrder(int order) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_diseqc_parameters.m_command_order=order; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setFastDiSEqC(bool onoff) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_diseqc_parameters.m_use_fast=onoff; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setSeqRepeat(bool onoff) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_diseqc_parameters.m_seq_repeat = onoff; else return -ENOENT; return 0; } /* Rotor Specific Parameters */ RESULT eDVBSatelliteEquipmentControl::setLongitude(float longitude) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_rotor_parameters.m_gotoxx_parameters.m_longitude=longitude; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setLatitude(float latitude) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_rotor_parameters.m_gotoxx_parameters.m_latitude=latitude; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setLoDirection(int direction) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_rotor_parameters.m_gotoxx_parameters.m_lo_direction=direction; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setLaDirection(int direction) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_rotor_parameters.m_gotoxx_parameters.m_la_direction=direction; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setUseInputpower(bool onoff) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_rotor_parameters.m_inputpower_parameters.m_use=onoff; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setInputpowerDelta(int delta) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_rotor_parameters.m_inputpower_parameters.m_delta=delta; else return -ENOENT; return 0; } /* Satellite Specific Parameters */ RESULT eDVBSatelliteEquipmentControl::addSatellite(int orbital_position) { if ( currentLNBValid() ) { std::map::iterator it = m_lnbs[m_lnbidx].m_satellites.find(orbital_position); if ( it == m_lnbs[m_lnbidx].m_satellites.end() ) { std::pair::iterator, bool > ret = m_lnbs[m_lnbidx].m_satellites.insert( std::pair(orbital_position, eDVBSatelliteSwitchParameters()) ); if ( ret.second ) m_curSat = ret.first; else return -ENOMEM; } else return -EEXIST; } else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setVoltageMode(int mode) { if ( currentLNBValid() && m_curSat != m_lnbs[m_lnbidx].m_satellites.end() ) m_curSat->second.m_voltage_mode = (eDVBSatelliteSwitchParameters::t_voltage_mode)mode; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setToneMode(int mode) { if ( currentLNBValid() ) { if ( m_curSat != m_lnbs[m_lnbidx].m_satellites.end() ) m_curSat->second.m_22khz_signal = (eDVBSatelliteSwitchParameters::t_22khz_signal)mode; else return -EPERM; } else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setRotorPosNum(int rotor_pos_num) { if ( currentLNBValid() ) { if ( m_curSat != m_lnbs[m_lnbidx].m_satellites.end() ) m_curSat->second.m_rotorPosNum=rotor_pos_num; else return -EPERM; } else return -ENOENT; return 0; }