#include #include #include #include #if HAVE_DVB_API_VERSION < 3 #define FREQUENCY Frequency #else #define FREQUENCY frequency #endif #include DEFINE_REF(eDVBSatelliteEquipmentControl); eDVBSatelliteEquipmentControl *eDVBSatelliteEquipmentControl::instance; int eDVBSatelliteEquipmentControl::m_params[MAX_PARAMS]; /* defaults are set in python lib/python/Components/NimManager.py in InitSecParams function via setParam call */ void eDVBSatelliteEquipmentControl::setParam(int param, int value) { if (param >= 0 && param < MAX_PARAMS) m_params[param]=value; } eDVBSatelliteEquipmentControl::eDVBSatelliteEquipmentControl(eSmartPtrList &avail_frontends) :m_lnbidx(-1), m_curSat(m_lnbs[0].m_satellites.end()), m_avail_frontends(avail_frontends), m_rotorMoving(false) { if (!instance) instance = this; clear(); // ASTRA addLNB(); setLNBTunerMask(3); setLNBLOFL(9750000); setLNBThreshold(11700000); setLNBLOFH(10607000); setDiSEqCMode(eDVBSatelliteDiseqcParameters::V1_0); setToneburst(eDVBSatelliteDiseqcParameters::NO); setRepeats(0); setCommittedCommand(eDVBSatelliteDiseqcParameters::BB); setCommandOrder(0); // committed, toneburst setFastDiSEqC(true); setSeqRepeat(false); addSatellite(192); setVoltageMode(eDVBSatelliteSwitchParameters::HV); setToneMode(eDVBSatelliteSwitchParameters::HILO); // Hotbird addLNB(); setLNBTunerMask(3); setLNBLOFL(9750000); setLNBThreshold(11700000); setLNBLOFH(10600000); setDiSEqCMode(eDVBSatelliteDiseqcParameters::V1_0); setToneburst(eDVBSatelliteDiseqcParameters::NO); setRepeats(0); setCommittedCommand(eDVBSatelliteDiseqcParameters::AB); setCommandOrder(0); // committed, toneburst setFastDiSEqC(true); setSeqRepeat(false); addSatellite(130); setVoltageMode(eDVBSatelliteSwitchParameters::HV); setToneMode(eDVBSatelliteSwitchParameters::HILO); // Rotor addLNB(); setLNBTunerMask(3); setLNBLOFL(9750000); setLNBThreshold(11700000); setLNBLOFH(10600000); setDiSEqCMode(eDVBSatelliteDiseqcParameters::V1_2); setToneburst(eDVBSatelliteDiseqcParameters::NO); setRepeats(0); setCommittedCommand(eDVBSatelliteDiseqcParameters::AA); setCommandOrder(0); // committed, toneburst setFastDiSEqC(true); setSeqRepeat(false); setLaDirection(eDVBSatelliteRotorParameters::NORTH); setLoDirection(eDVBSatelliteRotorParameters::EAST); setLatitude(51.017); setLongitude(8.683); setUseInputpower(true); setInputpowerDelta(50); addSatellite(235); setVoltageMode(eDVBSatelliteSwitchParameters::HV); setToneMode(eDVBSatelliteSwitchParameters::HILO); setRotorPosNum(0); addSatellite(284); setVoltageMode(eDVBSatelliteSwitchParameters::HV); setToneMode(eDVBSatelliteSwitchParameters::HILO); setRotorPosNum(0); addSatellite(420); setVoltageMode(eDVBSatelliteSwitchParameters::HV); setToneMode(eDVBSatelliteSwitchParameters::HILO); setRotorPosNum(1); // stored pos 1 } static void checkLinkedParams(int direction, int &linked_ptr, int &ret, const eDVBFrontendParametersSatellite &sat, int csw, int ucsw, int toneburst, bool diseqc, bool rotor) { eDVBRegisteredFrontend *linked_fe = (eDVBRegisteredFrontend*) linked_ptr; int oRotorPos = -1; linked_fe->m_frontend->getData(eDVBFrontend::ROTOR_POS, oRotorPos); if (linked_fe->m_inuse) { int ocsw = -1, oucsw = -1, oToneburst = -1; linked_fe->m_frontend->getData(eDVBFrontend::CSW, ocsw); linked_fe->m_frontend->getData(eDVBFrontend::UCSW, oucsw); linked_fe->m_frontend->getData(eDVBFrontend::TONEBURST, oToneburst); #if 0 eDebug("compare csw %02x == lcsw %02x", csw, ocsw); if ( diseqc ) eDebug("compare ucsw %02x == lucsw %02x\ncompare toneburst %02x == oToneburst %02x", ucsw, oucsw, toneburst, oToneburst); if ( rotor ) eDebug("compare pos %d == current pos %d", sat.orbital_position, oRotorPos); #endif if ( (csw != ocsw) || ( diseqc && (ucsw != oucsw || toneburst != oToneburst) ) || ( rotor && oRotorPos != sat.orbital_position ) ) { // eDebug("can not tune this transponder with linked tuner in use!!"); ret=0; } // else // eDebug("OK .. can tune this transponder with linked tuner in use :)"); } else if (rotor && oRotorPos != -1) { ret -= abs(oRotorPos-sat.orbital_position); // eDebug("decrement rotor pos for linked tuner!!"); } linked_fe->m_frontend->getData(direction, linked_ptr); } int eDVBSatelliteEquipmentControl::canTune(const eDVBFrontendParametersSatellite &sat, iDVBFrontend *fe, int frontend_id ) { int ret=0, satcount=0; for (int idx=0; idx <= m_lnbidx; ++idx ) { bool rotor=false; eDVBSatelliteLNBParameters &lnb_param = m_lnbs[idx]; if ( lnb_param.tuner_mask & frontend_id ) // lnb for correct tuner? { eDVBSatelliteDiseqcParameters &di_param = lnb_param.m_diseqc_parameters; satcount += lnb_param.m_satellites.size(); std::map::iterator sit = lnb_param.m_satellites.find(sat.orbital_position); if ( sit != lnb_param.m_satellites.end()) { int band=0, linked_prev_ptr=-1, linked_next_ptr=-1, satpos_depends_ptr=-1, csw = di_param.m_committed_cmd, ucsw = di_param.m_uncommitted_cmd, toneburst = di_param.m_toneburst_param, curRotorPos; fe->getData(eDVBFrontend::ROTOR_POS, curRotorPos); fe->getData(eDVBFrontend::LINKED_PREV_PTR, linked_prev_ptr); fe->getData(eDVBFrontend::LINKED_NEXT_PTR, linked_next_ptr); fe->getData(eDVBFrontend::SATPOS_DEPENDS_PTR, satpos_depends_ptr); if ( sat.frequency > lnb_param.m_lof_threshold ) band |= 1; if (!(sat.polarisation & eDVBFrontendParametersSatellite::Polarisation::Vertical)) band |= 2; bool diseqc=false; if (di_param.m_diseqc_mode >= eDVBSatelliteDiseqcParameters::V1_0) { diseqc=true; if ( di_param.m_committed_cmd < eDVBSatelliteDiseqcParameters::SENDNO ) csw = 0xF0 | (csw << 2); if (di_param.m_committed_cmd <= eDVBSatelliteDiseqcParameters::SENDNO) csw |= band; if ( di_param.m_diseqc_mode == eDVBSatelliteDiseqcParameters::V1_2 ) // ROTOR rotor = true; ret=10000; if (rotor && curRotorPos != -1) ret -= abs(curRotorPos-sat.orbital_position); } else { csw = band; ret = 15000; } while (ret && linked_prev_ptr != -1) // check for linked tuners.. checkLinkedParams(eDVBFrontend::LINKED_PREV_PTR, linked_prev_ptr, ret, sat, csw, ucsw, toneburst, diseqc, rotor); while (ret && linked_next_ptr != -1) // check for linked tuners.. checkLinkedParams(eDVBFrontend::LINKED_NEXT_PTR, linked_next_ptr, ret, sat, csw, ucsw, toneburst, diseqc, rotor); if (ret) if (satpos_depends_ptr != -1) { eDVBRegisteredFrontend *satpos_depends_to_fe = (eDVBRegisteredFrontend*) satpos_depends_ptr; if ( satpos_depends_to_fe->m_inuse ) { int oRotorPos = -1; satpos_depends_to_fe->m_frontend->getData(eDVBFrontend::ROTOR_POS, oRotorPos); if (!rotor || oRotorPos != sat.orbital_position) { // eDebug("can not tune this transponder ... rotor on other tuner is positioned to %d", oRotorPos); ret=0; } } // else // eDebug("OK .. can tune this transponder satpos is correct :)"); } if (ret) { int lof = sat.frequency > lnb_param.m_lof_threshold ? lnb_param.m_lof_hi : lnb_param.m_lof_lo; int tuner_freq = abs(sat.frequency - lof); // eDebug("tuner freq %d", tuner_freq); if (tuner_freq < 900000 || tuner_freq > 2200000) { ret=0; // eDebug("Transponder not tuneable with this lnb... %d Khz out of tuner range", // tuner_freq); } } } } } if (ret && satcount) ret -= (satcount-1); return ret; } #define VOLTAGE(x) (lnb_param.m_increased_voltage ? iDVBFrontend::voltage##x##_5 : iDVBFrontend::voltage##x) RESULT eDVBSatelliteEquipmentControl::prepare(iDVBFrontend &frontend, FRONTENDPARAMETERS &parm, const eDVBFrontendParametersSatellite &sat, int frontend_id) { bool linked=false; bool depend_satpos_mode=false; for (int idx=0; idx <= m_lnbidx; ++idx ) { eDVBSatelliteLNBParameters &lnb_param = m_lnbs[idx]; if (!(lnb_param.tuner_mask & frontend_id)) // lnb for correct tuner? continue; eDVBSatelliteDiseqcParameters &di_param = lnb_param.m_diseqc_parameters; eDVBSatelliteRotorParameters &rotor_param = lnb_param.m_rotor_parameters; std::map::iterator sit = lnb_param.m_satellites.find(sat.orbital_position); if ( sit != lnb_param.m_satellites.end()) { eDVBSatelliteSwitchParameters &sw_param = sit->second; bool doSetVoltageToneFrontend = true; bool doSetFrontend = true; int band=0, linked_prev_ptr=-1, // linked tuner linked_next_ptr=-1, // linked tuner satpos_depends_ptr=-1, voltage = iDVBFrontend::voltageOff, tone = iDVBFrontend::toneOff, csw = di_param.m_committed_cmd, ucsw = di_param.m_uncommitted_cmd, toneburst = di_param.m_toneburst_param, lastcsw = -1, lastucsw = -1, lastToneburst = -1, lastRotorCmd = -1, curRotorPos = -1; frontend.getData(eDVBFrontend::CSW, lastcsw); frontend.getData(eDVBFrontend::UCSW, lastucsw); frontend.getData(eDVBFrontend::TONEBURST, lastToneburst); frontend.getData(eDVBFrontend::ROTOR_CMD, lastRotorCmd); frontend.getData(eDVBFrontend::ROTOR_POS, curRotorPos); frontend.getData(eDVBFrontend::LINKED_PREV_PTR, linked_prev_ptr); frontend.getData(eDVBFrontend::LINKED_NEXT_PTR, linked_next_ptr); frontend.getData(eDVBFrontend::SATPOS_DEPENDS_PTR, satpos_depends_ptr); while (linked_prev_ptr != -1) // check for linked tuners.. { eDVBRegisteredFrontend *linked_fe = (eDVBRegisteredFrontend*) linked_prev_ptr; if (linked_fe->m_inuse) { eDebug("[SEC] frontend is linked with another and the other one is in use.. so we dont do SEC!!"); linked=true; break; } linked_fe->m_frontend->getData(eDVBFrontend::LINKED_PREV_PTR, linked_prev_ptr); } if (!linked) while (linked_next_ptr != -1) // check for linked tuners.. { eDVBRegisteredFrontend *linked_fe = (eDVBRegisteredFrontend*) linked_next_ptr; if (linked_fe->m_inuse) { eDebug("[SEC] frontend is linked with another and the other one is in use.. so we dont do SEC!!"); linked=true; break; } linked_fe->m_frontend->getData(eDVBFrontend::LINKED_NEXT_PTR, linked_next_ptr); } if (satpos_depends_ptr != -1) { eDVBRegisteredFrontend *satpos_fe = (eDVBRegisteredFrontend*) satpos_depends_ptr; if (satpos_fe->m_inuse) { if ( di_param.m_diseqc_mode != eDVBSatelliteDiseqcParameters::V1_2 ) continue; eDebug("[SEC] frontend is depending on satpos of other one.. so we dont turn rotor!!"); depend_satpos_mode=true; } } if ( sat.frequency > lnb_param.m_lof_threshold ) band |= 1; if (band&1) parm.FREQUENCY = sat.frequency - lnb_param.m_lof_hi; else parm.FREQUENCY = sat.frequency - lnb_param.m_lof_lo; parm.FREQUENCY = abs(parm.FREQUENCY); frontend.setData(eDVBFrontend::FREQ_OFFSET, sat.frequency - parm.FREQUENCY); if (!(sat.polarisation & eDVBFrontendParametersSatellite::Polarisation::Vertical)) band |= 2; if ( sw_param.m_voltage_mode == eDVBSatelliteSwitchParameters::_14V || ( sat.polarisation & eDVBFrontendParametersSatellite::Polarisation::Vertical && sw_param.m_voltage_mode == eDVBSatelliteSwitchParameters::HV ) ) voltage = VOLTAGE(13); else if ( sw_param.m_voltage_mode == eDVBSatelliteSwitchParameters::_18V || ( !(sat.polarisation & eDVBFrontendParametersSatellite::Polarisation::Vertical) && sw_param.m_voltage_mode == eDVBSatelliteSwitchParameters::HV ) ) voltage = VOLTAGE(18); if ( (sw_param.m_22khz_signal == eDVBSatelliteSwitchParameters::ON) || ( sw_param.m_22khz_signal == eDVBSatelliteSwitchParameters::HILO && (band&1) ) ) tone = iDVBFrontend::toneOn; else if ( (sw_param.m_22khz_signal == eDVBSatelliteSwitchParameters::OFF) || ( sw_param.m_22khz_signal == eDVBSatelliteSwitchParameters::HILO && !(band&1) ) ) tone = iDVBFrontend::toneOff; eSecCommandList sec_sequence; if (di_param.m_diseqc_mode >= eDVBSatelliteDiseqcParameters::V1_0) { if ( di_param.m_committed_cmd < eDVBSatelliteDiseqcParameters::SENDNO ) csw = 0xF0 | (csw << 2); if (di_param.m_committed_cmd <= eDVBSatelliteDiseqcParameters::SENDNO) csw |= band; bool send_csw = (di_param.m_committed_cmd != eDVBSatelliteDiseqcParameters::SENDNO); bool changed_csw = send_csw && csw != lastcsw; bool send_ucsw = (di_param.m_uncommitted_cmd && di_param.m_diseqc_mode > eDVBSatelliteDiseqcParameters::V1_0); bool changed_ucsw = send_ucsw && ucsw != lastucsw; bool send_burst = (di_param.m_toneburst_param != eDVBSatelliteDiseqcParameters::NO); bool changed_burst = send_burst && toneburst != lastToneburst; int send_mask = 0; /* 1 must send csw 2 must send ucsw 4 send toneburst first 8 send toneburst at end */ if (changed_burst) // toneburst first and toneburst changed { if (di_param.m_command_order&1) { send_mask |= 4; if ( send_csw ) send_mask |= 1; if ( send_ucsw ) send_mask |= 2; } else send_mask |= 8; } if (changed_ucsw) { send_mask |= 2; if ((di_param.m_command_order&4) && send_csw) send_mask |= 1; if (di_param.m_command_order==4 && send_burst) send_mask |= 8; } if (changed_csw) { if ( di_param.m_use_fast && di_param.m_committed_cmd < eDVBSatelliteDiseqcParameters::SENDNO && (lastcsw & 0xF0) && ((csw / 4) == (lastcsw / 4)) ) eDebug("dont send committed cmd (fast diseqc)"); else { send_mask |= 1; if (!(di_param.m_command_order&4) && send_ucsw) send_mask |= 2; if (!(di_param.m_command_order&1) && send_burst) send_mask |= 8; } } #if 0 eDebugNoNewLine("sendmask: "); for (int i=3; i >= 0; --i) if ( send_mask & (1<= 0) // Northern Hemisphere { int tmp=(int)round( fabs( 180 - satHourAngle ) * 10.0 ); RotorCmd = (tmp/10)*0x10 + gotoXTable[ tmp % 10 ]; if (satHourAngle < 180) // the east RotorCmd |= 0xE000; else // west RotorCmd |= 0xD000; } else // Southern Hemisphere { if (satHourAngle < 180) // the east { int tmp=(int)round( fabs( satHourAngle ) * 10.0 ); RotorCmd = (tmp/10)*0x10 + gotoXTable[ tmp % 10 ]; RotorCmd |= 0xD000; } else // west { int tmp=(int)round( fabs( 360 - satHourAngle ) * 10.0 ); RotorCmd = (tmp/10)*0x10 + gotoXTable[ tmp % 10 ]; RotorCmd |= 0xE000; } } eDebug("RotorCmd = %04x", RotorCmd); } } } if ( send_mask ) { eSecCommand::pair compare; compare.steps = +3; compare.tone = iDVBFrontend::toneOff; sec_sequence.push_back( eSecCommand(eSecCommand::IF_TONE_GOTO, compare) ); sec_sequence.push_back( eSecCommand(eSecCommand::SET_TONE, iDVBFrontend::toneOff) ); sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, m_params[DELAY_AFTER_CONT_TONE]) ); compare.voltage = iDVBFrontend::voltageOff; compare.steps = +3; // the next is a check if voltage is switched off.. then we first set a voltage :) // else we set voltage after all diseqc stuff.. sec_sequence.push_back( eSecCommand(eSecCommand::IF_NOT_VOLTAGE_GOTO, compare) ); if ( RotorCmd != -1 && RotorCmd != lastRotorCmd ) { if (rotor_param.m_inputpower_parameters.m_use) compare.voltage = VOLTAGE(18); // in input power mode set 18V for measure input power else compare.voltage = VOLTAGE(13); // in normal mode start turning with 13V } else compare.voltage = voltage; sec_sequence.push_back( eSecCommand(eSecCommand::SET_VOLTAGE, compare.voltage) ); // voltage was disabled..so we wait a longer time .. for normal switches 250ms should be enough sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, m_params[DELAY_AFTER_ENABLE_VOLTAGE_BEFORE_SWITCH_CMDS]) ); for (int seq_repeat = 0; seq_repeat < (di_param.m_seq_repeat?2:1); ++seq_repeat) { if ( send_mask & 4 ) { sec_sequence.push_back( eSecCommand(eSecCommand::SEND_TONEBURST, di_param.m_toneburst_param) ); sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, m_params[DELAY_AFTER_TONEBURST]) ); } int loops=0; if ( send_mask & 1 ) ++loops; if ( send_mask & 2 ) ++loops; loops <<= di_param.m_repeats; for ( int i = 0; i < loops;) // fill commands... { eDVBDiseqcCommand diseqc; diseqc.len = 4; diseqc.data[0] = i ? 0xE1 : 0xE0; diseqc.data[1] = 0x10; if ( (send_mask & 2) && (di_param.m_command_order & 4) ) { diseqc.data[2] = 0x39; diseqc.data[3] = ucsw; } else if ( send_mask & 1 ) { diseqc.data[2] = 0x38; diseqc.data[3] = csw; } else // no committed command confed.. so send uncommitted.. { diseqc.data[2] = 0x39; diseqc.data[3] = ucsw; } sec_sequence.push_back( eSecCommand(eSecCommand::SEND_DISEQC, diseqc) ); i++; if ( i < loops ) { int cmd=0; if (diseqc.data[2] == 0x38 && (send_mask & 2)) cmd=0x39; else if (diseqc.data[2] == 0x39 && (send_mask & 1)) cmd=0x38; int tmp = m_params[DELAY_BETWEEN_DISEQC_REPEATS]; if (cmd) { int delay = di_param.m_repeats ? (tmp - 54) / 2 : tmp; // standard says 100msek between two repeated commands sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, delay) ); diseqc.data[2]=cmd; diseqc.data[3]=(cmd==0x38) ? csw : ucsw; sec_sequence.push_back( eSecCommand(eSecCommand::SEND_DISEQC, diseqc) ); ++i; if ( i < loops ) sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, delay ) ); else sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, m_params[DELAY_AFTER_LAST_DISEQC_CMD]) ); } else // delay 120msek when no command is in repeat gap sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, tmp) ); } else sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, m_params[DELAY_AFTER_LAST_DISEQC_CMD]) ); } if ( send_mask & 8 ) // toneburst at end of sequence { sec_sequence.push_back( eSecCommand(eSecCommand::SEND_TONEBURST, di_param.m_toneburst_param) ); sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, m_params[DELAY_AFTER_TONEBURST]) ); } } } if ( RotorCmd != -1 && RotorCmd != lastRotorCmd ) { eSecCommand::pair compare; if (!send_mask) { compare.steps = +3; compare.tone = iDVBFrontend::toneOff; sec_sequence.push_back( eSecCommand(eSecCommand::IF_TONE_GOTO, compare) ); sec_sequence.push_back( eSecCommand(eSecCommand::SET_TONE, iDVBFrontend::toneOff) ); sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, m_params[DELAY_AFTER_CONT_TONE]) ); compare.voltage = iDVBFrontend::voltageOff; compare.steps = +4; // the next is a check if voltage is switched off.. then we first set a voltage :) // else we set voltage after all diseqc stuff.. sec_sequence.push_back( eSecCommand(eSecCommand::IF_NOT_VOLTAGE_GOTO, compare) ); if (rotor_param.m_inputpower_parameters.m_use) sec_sequence.push_back( eSecCommand(eSecCommand::SET_VOLTAGE, VOLTAGE(18)) ); // set 18V for measure input power else sec_sequence.push_back( eSecCommand(eSecCommand::SET_VOLTAGE, VOLTAGE(13)) ); // in normal mode start turning with 13V sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, m_params[DELAY_AFTER_ENABLE_VOLTAGE_BEFORE_MOTOR_CMD]) ); // wait 750ms when voltage was disabled sec_sequence.push_back( eSecCommand(eSecCommand::GOTO, +9) ); // no need to send stop rotor cmd and recheck voltage } else sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, m_params[DELAY_BETWEEN_SWITCH_AND_MOTOR_CMD]) ); // wait 700ms when diseqc changed eDVBDiseqcCommand diseqc; diseqc.len = 3; diseqc.data[0] = 0xE0; diseqc.data[1] = 0x31; // positioner diseqc.data[2] = 0x60; // stop sec_sequence.push_back( eSecCommand(eSecCommand::IF_ROTORPOS_VALID_GOTO, +5) ); sec_sequence.push_back( eSecCommand(eSecCommand::SEND_DISEQC, diseqc) ); sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, 50) ); sec_sequence.push_back( eSecCommand(eSecCommand::SEND_DISEQC, diseqc) ); // wait 150msec after send rotor stop cmd sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, m_params[DELAY_AFTER_MOTOR_STOP_CMD]) ); diseqc.data[0] = 0xE0; diseqc.data[1] = 0x31; // positioner if ( useGotoXX ) { diseqc.len = 5; diseqc.data[2] = 0x6E; // drive to angular position diseqc.data[3] = ((RotorCmd & 0xFF00) / 0x100); diseqc.data[4] = RotorCmd & 0xFF; } else { diseqc.len = 4; diseqc.data[2] = 0x6B; // goto stored sat position diseqc.data[3] = RotorCmd; diseqc.data[4] = 0x00; } if ( rotor_param.m_inputpower_parameters.m_use ) { // use measure rotor input power to detect rotor state eSecCommand::rotor cmd; eSecCommand::pair compare; compare.voltage = VOLTAGE(18); compare.steps = +3; sec_sequence.push_back( eSecCommand(eSecCommand::IF_VOLTAGE_GOTO, compare) ); sec_sequence.push_back( eSecCommand(eSecCommand::SET_VOLTAGE, compare.voltage) ); // measure idle power values sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, m_params[DELAY_AFTER_VOLTAGE_CHANGE_BEFORE_MEASURE_IDLE_INPUTPOWER]) ); // wait 150msec after voltage change sec_sequence.push_back( eSecCommand(eSecCommand::MEASURE_IDLE_INPUTPOWER, 1) ); compare.val = 1; compare.steps = -2; sec_sequence.push_back( eSecCommand(eSecCommand::IF_MEASURE_IDLE_WAS_NOT_OK_GOTO, compare) ); sec_sequence.push_back( eSecCommand(eSecCommand::SET_VOLTAGE, VOLTAGE(13)) ); sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, m_params[DELAY_AFTER_VOLTAGE_CHANGE_BEFORE_MEASURE_IDLE_INPUTPOWER]) ); // wait 150msec before measure sec_sequence.push_back( eSecCommand(eSecCommand::MEASURE_IDLE_INPUTPOWER, 0) ); compare.val = 0; sec_sequence.push_back( eSecCommand(eSecCommand::IF_MEASURE_IDLE_WAS_NOT_OK_GOTO, compare) ); //////////////////////////// sec_sequence.push_back( eSecCommand(eSecCommand::SET_POWER_LIMITING_MODE, eSecCommand::modeStatic) ); sec_sequence.push_back( eSecCommand(eSecCommand::SET_ROTOR_DISEQC_RETRYS, m_params[MOTOR_COMMAND_RETRIES]) ); // 2 retries sec_sequence.push_back( eSecCommand(eSecCommand::INVALIDATE_CURRENT_ROTORPARMS) ); sec_sequence.push_back( eSecCommand(eSecCommand::SEND_DISEQC, diseqc) ); sec_sequence.push_back( eSecCommand(eSecCommand::SET_TIMEOUT, 40) ); // 2 seconds rotor start timout // rotor start loop sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, 50) ); // 50msec delay sec_sequence.push_back( eSecCommand(eSecCommand::MEASURE_RUNNING_INPUTPOWER) ); cmd.direction=1; // check for running rotor cmd.deltaA=rotor_param.m_inputpower_parameters.m_delta; cmd.steps=+5; cmd.okcount=0; sec_sequence.push_back( eSecCommand(eSecCommand::IF_INPUTPOWER_DELTA_GOTO, cmd ) ); // check if rotor has started sec_sequence.push_back( eSecCommand(eSecCommand::IF_TIMEOUT_GOTO, +2 ) ); // timeout .. we assume now the rotor is already at the correct position sec_sequence.push_back( eSecCommand(eSecCommand::GOTO, -4) ); // goto loop start sec_sequence.push_back( eSecCommand(eSecCommand::IF_NO_MORE_ROTOR_DISEQC_RETRYS_GOTO, +10 ) ); // timeout .. we assume now the rotor is already at the correct position sec_sequence.push_back( eSecCommand(eSecCommand::GOTO, -8) ); // goto loop start //////////////////// sec_sequence.push_back( eSecCommand(eSecCommand::SET_VOLTAGE, VOLTAGE(18)) ); sec_sequence.push_back( eSecCommand(eSecCommand::SET_POWER_LIMITING_MODE, eSecCommand::modeDynamic) ); sec_sequence.push_back( eSecCommand(eSecCommand::SET_TIMEOUT, m_params[MOTOR_RUNNING_TIMEOUT]*20) ); // 2 minutes running timeout // rotor running loop sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, 50) ); // wait 50msec sec_sequence.push_back( eSecCommand(eSecCommand::MEASURE_RUNNING_INPUTPOWER) ); cmd.direction=0; // check for stopped rotor cmd.steps=+4; sec_sequence.push_back( eSecCommand(eSecCommand::IF_INPUTPOWER_DELTA_GOTO, cmd ) ); sec_sequence.push_back( eSecCommand(eSecCommand::IF_TIMEOUT_GOTO, +4 ) ); // timeout ? this should never happen sec_sequence.push_back( eSecCommand(eSecCommand::GOTO, -4) ); // running loop start ///////////////////// sec_sequence.push_back( eSecCommand(eSecCommand::SET_POWER_LIMITING_MODE, eSecCommand::modeDynamic) ); sec_sequence.push_back( eSecCommand(eSecCommand::UPDATE_CURRENT_ROTORPARAMS) ); } else { // use normal turning mode doSetVoltageToneFrontend=false; doSetFrontend=false; eSecCommand::rotor cmd; eSecCommand::pair compare; compare.voltage = VOLTAGE(13); compare.steps = +3; sec_sequence.push_back( eSecCommand(eSecCommand::IF_VOLTAGE_GOTO, compare) ); sec_sequence.push_back( eSecCommand(eSecCommand::SET_VOLTAGE, compare.voltage) ); sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, m_params[DELAY_AFTER_VOLTAGE_CHANGE_BEFORE_MOTOR_CMD]) ); // wait 150msec after voltage change sec_sequence.push_back( eSecCommand(eSecCommand::SET_POWER_LIMITING_MODE, eSecCommand::modeStatic) ); sec_sequence.push_back( eSecCommand(eSecCommand::INVALIDATE_CURRENT_ROTORPARMS) ); sec_sequence.push_back( eSecCommand(eSecCommand::SEND_DISEQC, diseqc) ); compare.voltage = voltage; compare.steps = +3; sec_sequence.push_back( eSecCommand(eSecCommand::IF_VOLTAGE_GOTO, compare) ); // correct final voltage? sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, 2000) ); // wait 2 second before set high voltage sec_sequence.push_back( eSecCommand(eSecCommand::SET_VOLTAGE, voltage) ); compare.tone = tone; sec_sequence.push_back( eSecCommand(eSecCommand::IF_TONE_GOTO, compare) ); sec_sequence.push_back( eSecCommand(eSecCommand::SET_TONE, tone) ); sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, m_params[DELAY_AFTER_CONT_TONE]) ); sec_sequence.push_back( eSecCommand(eSecCommand::SET_FRONTEND) ); cmd.direction=1; // check for running rotor cmd.deltaA=0; cmd.steps=+3; cmd.okcount=0; sec_sequence.push_back( eSecCommand(eSecCommand::SET_TIMEOUT, m_params[MOTOR_RUNNING_TIMEOUT]*4) ); // 2 minutes running timeout sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, 250) ); // 250msec delay sec_sequence.push_back( eSecCommand(eSecCommand::IF_TUNER_LOCKED_GOTO, cmd ) ); sec_sequence.push_back( eSecCommand(eSecCommand::IF_TIMEOUT_GOTO, +3 ) ); sec_sequence.push_back( eSecCommand(eSecCommand::GOTO, -3) ); // goto loop start sec_sequence.push_back( eSecCommand(eSecCommand::UPDATE_CURRENT_ROTORPARAMS) ); sec_sequence.push_back( eSecCommand(eSecCommand::SET_POWER_LIMITING_MODE, eSecCommand::modeDynamic) ); } frontend.setData(eDVBFrontend::NEW_ROTOR_CMD, RotorCmd); frontend.setData(eDVBFrontend::NEW_ROTOR_POS, sat.orbital_position); } } else csw = band; frontend.setData(eDVBFrontend::CSW, csw); frontend.setData(eDVBFrontend::UCSW, ucsw); frontend.setData(eDVBFrontend::TONEBURST, di_param.m_toneburst_param); if (!linked && doSetVoltageToneFrontend) { eSecCommand::pair compare; compare.voltage = voltage; compare.steps = +3; sec_sequence.push_back( eSecCommand(eSecCommand::IF_VOLTAGE_GOTO, compare) ); // voltage already correct ? sec_sequence.push_back( eSecCommand(eSecCommand::SET_VOLTAGE, voltage) ); sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, m_params[DELAY_AFTER_FINAL_VOLTAGE_CHANGE]) ); compare.tone = tone; sec_sequence.push_back( eSecCommand(eSecCommand::IF_TONE_GOTO, compare) ); sec_sequence.push_back( eSecCommand(eSecCommand::SET_TONE, tone) ); sec_sequence.push_back( eSecCommand(eSecCommand::SLEEP, m_params[DELAY_AFTER_CONT_TONE]) ); } if (doSetFrontend) { sec_sequence.push_back( eSecCommand(eSecCommand::START_TUNE_TIMEOUT) ); sec_sequence.push_back( eSecCommand(eSecCommand::SET_FRONTEND) ); } frontend.setSecSequence(sec_sequence); return 0; } } eDebug("found no useable satellite configuration for orbital position (%d)", sat.orbital_position ); return -1; } RESULT eDVBSatelliteEquipmentControl::clear() { for (int i=0; i <= m_lnbidx; ++i) { m_lnbs[i].m_satellites.clear(); m_lnbs[i].tuner_mask = 0; } m_lnbidx=-1; // clear linked tuner configuration for (eSmartPtrList::iterator it(m_avail_frontends.begin()); it != m_avail_frontends.end(); ++it) { it->m_frontend->setData(eDVBFrontend::SATPOS_DEPENDS_PTR, -1); it->m_frontend->setData(eDVBFrontend::LINKED_PREV_PTR, -1); it->m_frontend->setData(eDVBFrontend::LINKED_NEXT_PTR, -1); } return 0; } /* LNB Specific Parameters */ RESULT eDVBSatelliteEquipmentControl::addLNB() { if ( (m_lnbidx+1) < (int)(sizeof(m_lnbs) / sizeof(eDVBSatelliteLNBParameters))) m_curSat=m_lnbs[++m_lnbidx].m_satellites.end(); else { eDebug("no more LNB free... cnt is %d", m_lnbidx); return -ENOSPC; } return 0; } RESULT eDVBSatelliteEquipmentControl::setLNBTunerMask(int tunermask) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].tuner_mask = tunermask; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setLNBLOFL(int lofl) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_lof_lo = lofl; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setLNBLOFH(int lofh) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_lof_hi = lofh; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setLNBThreshold(int threshold) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_lof_threshold = threshold; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setLNBIncreasedVoltage(bool onoff) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_increased_voltage = onoff; else return -ENOENT; return 0; } /* DiSEqC Specific Parameters */ RESULT eDVBSatelliteEquipmentControl::setDiSEqCMode(int diseqcmode) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_diseqc_parameters.m_diseqc_mode = (eDVBSatelliteDiseqcParameters::t_diseqc_mode)diseqcmode; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setToneburst(int toneburst) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_diseqc_parameters.m_toneburst_param = (eDVBSatelliteDiseqcParameters::t_toneburst_param)toneburst; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setRepeats(int repeats) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_diseqc_parameters.m_repeats=repeats; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setCommittedCommand(int command) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_diseqc_parameters.m_committed_cmd=command; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setUncommittedCommand(int command) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_diseqc_parameters.m_uncommitted_cmd = command; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setCommandOrder(int order) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_diseqc_parameters.m_command_order=order; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setFastDiSEqC(bool onoff) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_diseqc_parameters.m_use_fast=onoff; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setSeqRepeat(bool onoff) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_diseqc_parameters.m_seq_repeat = onoff; else return -ENOENT; return 0; } /* Rotor Specific Parameters */ RESULT eDVBSatelliteEquipmentControl::setLongitude(float longitude) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_rotor_parameters.m_gotoxx_parameters.m_longitude=longitude; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setLatitude(float latitude) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_rotor_parameters.m_gotoxx_parameters.m_latitude=latitude; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setLoDirection(int direction) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_rotor_parameters.m_gotoxx_parameters.m_lo_direction=direction; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setLaDirection(int direction) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_rotor_parameters.m_gotoxx_parameters.m_la_direction=direction; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setUseInputpower(bool onoff) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_rotor_parameters.m_inputpower_parameters.m_use=onoff; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setInputpowerDelta(int delta) { if ( currentLNBValid() ) m_lnbs[m_lnbidx].m_rotor_parameters.m_inputpower_parameters.m_delta=delta; else return -ENOENT; return 0; } /* Satellite Specific Parameters */ RESULT eDVBSatelliteEquipmentControl::addSatellite(int orbital_position) { if ( currentLNBValid() ) { std::map::iterator it = m_lnbs[m_lnbidx].m_satellites.find(orbital_position); if ( it == m_lnbs[m_lnbidx].m_satellites.end() ) { std::pair::iterator, bool > ret = m_lnbs[m_lnbidx].m_satellites.insert( std::pair(orbital_position, eDVBSatelliteSwitchParameters()) ); if ( ret.second ) m_curSat = ret.first; else return -ENOMEM; } else return -EEXIST; } else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setVoltageMode(int mode) { if ( currentLNBValid() && m_curSat != m_lnbs[m_lnbidx].m_satellites.end() ) m_curSat->second.m_voltage_mode = (eDVBSatelliteSwitchParameters::t_voltage_mode)mode; else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setToneMode(int mode) { if ( currentLNBValid() ) { if ( m_curSat != m_lnbs[m_lnbidx].m_satellites.end() ) m_curSat->second.m_22khz_signal = (eDVBSatelliteSwitchParameters::t_22khz_signal)mode; else return -EPERM; } else return -ENOENT; return 0; } RESULT eDVBSatelliteEquipmentControl::setRotorPosNum(int rotor_pos_num) { if ( currentLNBValid() ) { if ( m_curSat != m_lnbs[m_lnbidx].m_satellites.end() ) m_curSat->second.m_rotorPosNum=rotor_pos_num; else return -EPERM; } else return -ENOENT; return 0; } struct sat_compare { int orb_pos, lofl, lofh; sat_compare(int o, int lofl, int lofh) :orb_pos(o), lofl(lofl), lofh(lofh) {} sat_compare(const sat_compare &x) :orb_pos(x.orb_pos), lofl(x.lofl), lofh(x.lofh) {} bool operator < (const sat_compare & cmp) const { if (orb_pos == cmp.orb_pos) { if ( abs(lofl-cmp.lofl) < 200000 ) { if (abs(lofh-cmp.lofh) < 200000) return false; return lofh::iterator it(m_avail_frontends.begin()); it != m_avail_frontends.end(); ++it, ++cnt) { if (cnt == tu1) p1 = *it; else if (cnt == tu2) p2 = *it; } if (p1 && p2) { // check for linked tuners do { int tmp; p1->m_frontend->getData(eDVBFrontend::LINKED_PREV_PTR, tmp); if (tmp != -1) p1 = (eDVBRegisteredFrontend*)tmp; else break; } while (true); do { int tmp; p2->m_frontend->getData(eDVBFrontend::LINKED_PREV_PTR, tmp); if (tmp != -1) p2 = (eDVBRegisteredFrontend*)tmp; else break; } while (true); if (p1 != p2) { int tmp1=-1; int tmp2=-1; // check for rotor dependency p1->m_frontend->getData(eDVBFrontend::SATPOS_DEPENDS_PTR, tmp1); if (tmp1 != -1) p1 = (eDVBRegisteredFrontend*)tmp1; p2->m_frontend->getData(eDVBFrontend::SATPOS_DEPENDS_PTR, tmp2); if (tmp2 != -1) p2 = (eDVBRegisteredFrontend*)tmp2; if (p1 != p2) { int tu1_mask = 1 << p1->m_frontend->getSlotID(), tu2_mask = 1 << p2->m_frontend->getSlotID(); std::set tu1sats, tu2sats; std::list tu1difference, tu2difference; std::insert_iterator > insert1(tu1difference, tu1difference.begin()), insert2(tu2difference, tu2difference.begin()); for (int idx=0; idx <= m_lnbidx; ++idx ) { eDVBSatelliteLNBParameters &lnb_param = m_lnbs[idx]; for (std::map::iterator sit(lnb_param.m_satellites.begin()); sit != lnb_param.m_satellites.end(); ++sit) { if ( lnb_param.tuner_mask & tu1_mask ) tu1sats.insert(sat_compare(sit->first, lnb_param.m_lof_lo, lnb_param.m_lof_hi)); if ( lnb_param.tuner_mask & tu2_mask ) tu2sats.insert(sat_compare(sit->first, lnb_param.m_lof_lo, lnb_param.m_lof_hi)); } } std::set_difference(tu1sats.begin(), tu1sats.end(), tu2sats.begin(), tu2sats.end(), insert1); std::set_difference(tu2sats.begin(), tu2sats.end(), tu1sats.begin(), tu1sats.end(), insert2); if (!tu1sats.empty() || !tu2sats.empty()) { int idx=0; ret = PyList_New(2+tu1difference.size()+tu2difference.size()); PyList_SET_ITEM(ret, idx++, PyInt_FromLong(tu1difference.size())); for(std::list::iterator it(tu1difference.begin()); it != tu1difference.end(); ++it) PyList_SET_ITEM(ret, idx++, PyInt_FromLong(it->orb_pos)); PyList_SET_ITEM(ret, idx++, PyInt_FromLong(tu2difference.size())); for(std::list::iterator it(tu2difference.begin()); it != tu2difference.end(); ++it) PyList_SET_ITEM(ret, idx++, PyInt_FromLong(it->orb_pos)); } } } } } if (!ret) { ret = PyList_New(2); PyList_SET_ITEM(ret, 0, PyInt_FromLong(0)); PyList_SET_ITEM(ret, 1, PyInt_FromLong(0)); } return ret; } RESULT eDVBSatelliteEquipmentControl::setTunerLinked(int tu1, int tu2) { if (tu1 != tu2) { eDVBRegisteredFrontend *p1=NULL, *p2=NULL; int cnt=0; for (eSmartPtrList::iterator it(m_avail_frontends.begin()); it != m_avail_frontends.end(); ++it, ++cnt) { if (cnt == tu1) p1 = *it; else if (cnt == tu2) p2 = *it; } if (p1 && p2) { p1->m_frontend->setData(eDVBFrontend::LINKED_PREV_PTR, (int)p2); p2->m_frontend->setData(eDVBFrontend::LINKED_NEXT_PTR, (int)p1); return 0; } } return -1; } RESULT eDVBSatelliteEquipmentControl::setTunerDepends(int tu1, int tu2) { if (tu1 == tu2) return -1; eDVBRegisteredFrontend *p1=NULL, *p2=NULL; int cnt=0; for (eSmartPtrList::iterator it(m_avail_frontends.begin()); it != m_avail_frontends.end(); ++it, ++cnt) { if (cnt == tu1) p1 = *it; else if (cnt == tu2) p2 = *it; } if (p1 && p2) { p1->m_frontend->setData(eDVBFrontend::SATPOS_DEPENDS_PTR, (int)p2); p2->m_frontend->setData(eDVBFrontend::SATPOS_DEPENDS_PTR, (int)p1); return 0; } return -1; } bool eDVBSatelliteEquipmentControl::isRotorMoving() { return m_rotorMoving; } void eDVBSatelliteEquipmentControl::setRotorMoving(bool b) { m_rotorMoving=b; }