1 from bisect import insort
2 from time import strftime, time, localtime, gmtime, mktime
3 from calendar import timegm
4 from enigma import eTimer
12 def __init__(self, begin, end):
14 self.prepare_time = 20
22 def resetRepeated(self):
23 self.repeated = int(0)
25 def setRepeated(self, day):
26 self.repeated |= (2 ** day)
27 print "Repeated: " + str(self.repeated)
30 return self.state == self.StateRunning
32 # update self.begin and self.end according to the self.repeated-flags
33 def processRepeated(self):
34 print "ProcessRepeated"
35 if (self.repeated != 0):
38 #to avoid problems with daylight saving, we need to calculate with localtime, in struct_time representation
39 localbegin = localtime(self.begin)
40 localend = localtime(self.end)
41 localnow = localtime(now)
43 print strftime("%c", localbegin)
44 print strftime("%c", localend)
51 print "Day: " + str(x)
56 print strftime("%c", localnow)
57 while ((day[localbegin.tm_wday] != 0) or ((day[localbegin.tm_wday] == 0) and localend < localnow)):
58 print strftime("%c", localbegin)
59 print strftime("%c", localend)
60 #add one day to the struct_time, we have to convert using gmt functions, because the daylight saving flag might change after we add our 86400 seconds
61 localbegin = gmtime(timegm(localbegin) + 86400)
62 localend = gmtime(timegm(localend) + 86400)
64 #we now have a struct_time representation of begin and end in localtime, but we have to calculate back to (gmt) seconds since epoch
65 self.begin = int(mktime(localbegin))
66 self.end = int(mktime(localend)) + 1
68 print "ProcessRepeated result"
69 print strftime("%c", localtime(self.begin))
70 print strftime("%c", localtime(self.end))
75 return self.getNextActivation() < o.getNextActivation()
82 def timeChanged(self):
85 # check if a timer entry must be skipped
87 return self.end <= time() and self.state == TimerEntry.StateWaiting
92 # in case timer has not yet started, but gets aborted (so it's preparing),
94 if self.begin > self.end:
100 def getNextActivation():
107 self.disabled = False
110 # the time between "polls". We do this because
111 # we want to account for time jumps etc.
112 # of course if they occur <100s before starting,
113 # it's not good. thus, you have to repoll when
114 # you change the time.
116 # this is just in case. We don't want the timer
117 # hanging. we use this "edge-triggered-polling-scheme"
118 # anyway, so why don't make it a bit more fool-proof?
122 self.timer_list = [ ]
123 self.processed_timers = [ ]
125 self.timer = eTimer()
126 self.timer.timeout.get().append(self.calcNextActivation)
127 self.lastActivation = time()
129 self.calcNextActivation()
130 self.on_state_change = [ ]
132 def stateChanged(self, entry):
133 for f in self.on_state_change:
136 def getNextRecordingTime(self):
137 if len(self.timer_list) > 0:
138 return self.timer_list[0].begin
142 self.processed_timers = [entry for entry in self.processed_timers if entry.disabled]
144 def addTimerEntry(self, entry, noRecalc=0):
145 entry.processRepeated()
147 # when the timer has not yet started, and is already passed,
148 # don't go trough waiting/running/end-states, but sort it
149 # right into the processedTimers.
150 if entry.shouldSkip() or entry.state == TimerEntry.StateEnded or (entry.state == TimerEntry.StateWaiting and entry.disabled):
151 print "already passed, skipping"
152 print "shouldSkip:", entry.shouldSkip()
153 print "state == ended", entry.state == TimerEntry.StateEnded
154 print "waiting && disabled:", (entry.state == TimerEntry.StateWaiting and entry.disabled)
155 insort(self.processed_timers, entry)
156 entry.state = TimerEntry.StateEnded
158 insort(self.timer_list, entry)
160 self.calcNextActivation()
162 def setNextActivation(self, when):
163 delay = int((when - time()) * 1000)
164 print "[timer.py] next activation: %d (in %d ms)" % (when, delay)
166 self.timer.start(delay, 1)
169 def calcNextActivation(self):
170 if self.lastActivation > time():
171 print "[timer.py] timewarp - re-evaluating all processed timers."
172 tl = self.processed_timers
173 self.processed_timers = [ ]
175 # simulate a "waiting" state to give them a chance to re-occure
177 self.addTimerEntry(x, noRecalc=1)
179 self.processActivation()
180 self.lastActivation = time()
182 min = int(time()) + self.MaxWaitTime
184 # calculate next activation point
185 if len(self.timer_list):
186 w = self.timer_list[0].getNextActivation()
190 self.setNextActivation(min)
192 def timeChanged(self, timer):
195 if timer.state == TimerEntry.StateEnded:
196 self.processed_timers.remove(timer)
198 self.timer_list.remove(timer)
200 # give the timer a chance to re-enqueue
201 if timer.state == TimerEntry.StateEnded:
202 timer.state = TimerEntry.StateWaiting
203 self.addTimerEntry(timer)
205 def doActivate(self, w):
206 self.timer_list.remove(w)
208 # when activating a timer which has already passed,
209 # simply abort the timer. don't run trough all the stages.
211 w.state = TimerEntry.StateEnded
213 # when active returns true, this means "accepted".
214 # otherwise, the current state is kept.
215 # the timer entry itself will fix up the delay then.
219 # did this timer reached the last state?
220 if w.state < TimerEntry.StateEnded:
221 # no, sort it into active list
222 insort(self.timer_list, w)
224 # yes. Process repeated, and re-add.
227 w.state = TimerEntry.StateWaiting
228 self.addTimerEntry(w)
230 insort(self.processed_timers, w)
234 def processActivation(self):
235 print "It's now ", strftime("%c", localtime(time()))
238 # we keep on processing the first entry until it goes into the future.
239 while len(self.timer_list) and self.timer_list[0].getNextActivation() < t:
240 self.doActivate(self.timer_list[0])